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ABSTRACT
With the growing need to guide decision-making in today’s complex managerial environment,
researchers of the Operations Research/Management Science community have shown a
considerable interest in modelling complex managerial systems using the agent-based
modelling and simulation technique. This paper presents an estimation-and-optimisation
(ESTOPT) architecture to simulate an agent’s decision-making process in black-box managerial
environment. An ESTOPT agent’s behaviour is considered as a two-stage process of solving its
optimisation problem, some parameters of which are uncertain and need to be estimated. In
the first stage, the agent collects and records information for estimation; in the next stage, it
attempts to solve the optimisation problem. The solution guides the agent’s actions on the
environment which, in turn, provides the agent with new information and payoff as feedback.
In this paper, two agent-based models are introduced to demonstrate the implementation of
the ESTOPT approach. The simulation outcomes compare favourably with both empirical and
theoretical results, suggesting that the ESTOPT approach can be used to simulate an agent’s
decision-making process in black-box managerial environment.
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1. Introduction

Agent-based modelling and simulation (ABMS) is a
popular technique to understand the behaviour of a
complex system. To model the system, it first develops
an agent-basedmodel (ABM),which is represented by a
collection of agents. Next, simulation experiments with
this ABM are conducted to evaluate various strategies
for the operation of the system (Siebers,Macal, Garnett,
Buxton, & Pidd, 2010). This technique stems from the
disciplines of Complex Science and Computer Science,
and it has been increasingly applied to investigate awide
variety of complex systems ranging from social systems,
ecosystems, financial markets, and economies.

Motivated by the growing need to guide decision-
making in today’s complex managerial environment,
researchers of the Operations Research/Management
Science (OR/MS) community have shown a great in-
terest in the application of ABMS in modelling com-
plex managerial systems, such as supply chains, con-
sumer marketplaces, service systems, financial market
and transportation networks (Chen & Cheng, 2010;
He, Cheng, Dong, & Wang, 2014; Negahban & Yil-
maz, 2014; Zhang,Chan,&Ukkusuri, 2014). Compared
with equation-based methods, ABMS provides a nat-
ural, flexible and powerful approach for modellers to
capture the key elements of these systems, such as popu-
lation heterogeneity, non-linear feedback/relationship,
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and complex interaction topology (e.g., social network).
Rand and Rust (2011) provided a detailed compar-
ison of ABMS and other common OR/MS methods
(e.g., empirical modelling, behaviour experiments, and
system dynamics), and noted that ABMS “allows the
exploration of individual-level theories of behaviour,
but the results can be used to examine larger scale
phenomenon”. They also proposed useful guidelines on
when to apply ABMS and how to develop an ABM. In
the above agent-basedOR/MS studies, individuals (e.g.,
consumers) and organisations (e.g., firms) are designed
as autonomous agents that adapt to and co-evolve with
the dynamic complex system in which they exist. Ac-
cording to the complex adaptive system (CAS) the-
ory proposed by Holland (1996), systematic phenom-
ena and patterns emerge from the interactions among
agents. Therefore, the importance of agent’s behaviours
raises a critical question: how to model an agent’s be-
haviours when developing an agent-based OR/MS
model (Macal, 2016)?

To answer this question, we focus on two major
interdisciplinary communities which have contributed
significantly to the agent-related research in the litera-
ture, i.e., the agent-based social simulation (ABSS) and
agent-based computational economics (ACE) commu-
nities. Models of the ABSS, ACE and OR/MS share the
same research objects, i.e., humans and firms,
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instead of animals, plants and robots that are studied
by biologists and artificial intelligence scientists. There-
fore, agent-based OR/MS studies could possibly bor-
row several off-the-shelf agent architectures from the
ABSS and ACE communities to model agent decision-
making process. However, there are two fundamental
differences between ABSS/ACE and some agent-based
OR/MS research topics whenmodelling the behaviours
of humans and firms.

(1) Agent architectures in most ABSS models are gen-
erally imported from cognitive science, psychol-
ogy, neurology, sociology and other domains, be-
cause these models are mainly built upon the no-
tion that human behaviours are the responses to
their own and/or other individuals’ expectations,
i.e., personal belief, desire, intention and social
norms (Balke & Gilbert, 2014). However, these
factors are often neglected in most OR/MS studies.
Instead, entities considered in these studies are
usually treated as rational decision-makers. For
example, a player (e.g., a person or a firm) in a
non-cooperative game aims tomaximise its payoff;
a vehicle seeks the best route tominimise the cost of
travelling from its origin to destination (measured
by time or distance). Compared with the human
behaviours applied in ABSS, mathematical models
could be more suitable for modelling the decision-
making process of rational agents.

(2) ACE models typically need to create a large num-
ber of households and firms in order to simu-
late a regional, nationwide, or worldwide market.
This might lead to extreme high computational
complexity. To avoid such situation, agents’ be-
haviours in ACE research are often over-simplified
and described by discrete choice models, e.g., the
NK model (see Section 2 for a brief introduction).
However, some variables (e.g., price, distance) are
naturally continuous and are challenging to discre-
tise in a reasonable way.

These two issues indicate that there is a mismatch be-
tween existing agent architectures in ABSS and ACE
models and the general requirements of agent-based
OR/MS research, i.e., agents shouldmake rational deci-
sions and be able to solve complex optimisation prob-
lems. In addition to the above two aspects, there are
two important factors of agent-based OR/MS research
that should be considered when designing an agent’s
decision-making architecture.

The first factor is information availability, which
is often ignored in the existing solutions. In practice,
business entities tend to conceal private information
for competition or negotiation. Besides, agent-based
models often contain plenty of heterogeneous agents.
Based on these two reasons, an agent may not be able
to access full knowledge of the environment and mul-

tiple peers. Therefore, it is more reasonable to assume
that each agent regards all the other agents as part of
the environment. From the perspective of an agent,
the environment is a black box because its internal
mechanism is unknown (Ashby, 1961). In addition, the
environment provides the agent with a payoff based
on its previous decision(s). However, the payoff is un-
certain due to the change of other agent’s decisions
and some stochastic factors. For example, when mod-
elling the decision-making process of a vehicle, it is
proper to consider the uncertainty caused by other
vehicles’ decisions, rather than assuming that it has
full knowledge of the environment. Therefore, agents
in black-box environment can be viewed as bounded
rational agents because they have “limitations of both
knowledge and computational capacity” (Simon, 1997).

The other expected feature of agent architecture is its
compatibility with the existing OR/MS approaches and
models, which are developed to understand and solve
specific problems. For example, Dijkstra’s algorithm or
the travelling salesmanmodel can be applied to plan the
best route for a vehicle agent. Moreover, because of the
highflexibility of theABMSparadigm (Bonabeau, 2002,
p. 7281), applicable OR/MS models can be extended
by dropping some unrealistic assumptions and/or con-
sidering some “mathematics-unfriendly” elements. For
example, the epidemic model can be enriched by mod-
elling disease diffusion through different types of net-
works, and the simulation results can be compared
with that derived from differential equation models
(Rahmandad & Sterman, 2008). Therefore, an OR/MS-
compatible approach can make original results compa-
rable with those of ABMS and thus help validate the
ABM.

From the above analysis, we suggestmodelling agent
decision-making process in black-box managerial en-
vironment is to simulate how a bounded rational agent
(e.g., a firm) optimises its behaviours (e.g., by solv-
ing discrete and/or continuous optimisation problems)
in response to continuing changes without knowing
the full information about the environment and other
peers’ reactions. As reviewed and analysed in Section
2, such an architecture fulfilling these requirements, es-
pecially information availability considerations, seems
to be lacking in the literature.

In this paper, we propose an ESTimation-and-
OPTimisation (abbreviated as ESTOPT) architecture
as a new approach to modelling agent decision-making
for applicable OR/MS problems. In each time step of
simulation, an agent’s behaviours can be divided into
two stages: in the first stage, the agent receives pay-
off based on its previous decision, and collects ob-
servable information as historical data which is then
used to estimate uncertain information (e.g., some pa-
rameters of an optimisation problem); next, the agent
attempts to search for the optimal solution of the prob-
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lemwith estimated parameters. The solution guides the
agent’s decisions and actions which in turn will affect
other agents and the environment. Due to the trade-off
between exploration and exploitation, a probabilistic
mechanism is employed to decide the mode of agent
decision-making – randomly or optimally. Arbitrary
decisions are made to explore possible solution spaces
(i.e., randomly); while optimal solutions iteratively im-
prove agent’s behaviours (i.e., optimally).We introduce
two ABMs, a contribution game and a price war, to
demonstrate the implementation of the ESTOPT ap-
proach, and conduct thousands of experiments under
different scenarios with these two ABMs. The compu-
tational results suggest that ESTOPT can potentially
model an agent’s decision-making process in a black-
box managerial environment reasonably well.

To the best of our knowledge, this study is the first
attempt to develop a new approach for agent-based
OR/MS research problems in terms of modelling agent
decision-making, which is an essential topic in ABMS
but remains unexplored in the OR/MS literature. Com-
pared with current ABMS practices in this area, the
ESTOPT approach incorporates the estimation stage
to help the agent process information, and it employs
a probabilistic mechanism to help the agent tackle the
exploration-exploitation trade-off.Hence, the ESTOPT
could be very useful for bounded rational agents to
make decisions in black-box environment. The two ex-
amples of ABMs explicitly described in this paper could
be useful for interested readers to design, implement
and validate an ABM and conduct experiments for
the purpose of understanding OR/MS issues. Another
contribution of this study is the discussion of three
critical topics in agent-based OR/MS research, namely
validating an ABM, guiding an ABM, and examining
the impact of different exploration-exploitation balanc-
ing mechanisms.

The remainder of the paper is organised as follows.
In Section 2, the common approaches to modelling
the agent’s behaviours are reviewed. Section 3 presents
several typical OR/MS research topics applicable for
ABMS, as well as the features of these topics. Next, the
proposed ESTOPT approach is introduced in Section 4.
Then, two ESTOPT-style ABMs, a contribution game
and a price war, are presented in Sections 5 and 6, re-
spectively. Next, three critical problems of agent-based
OR/MS research are discussed in Section 7. Finally,
Section 8 concludes the paper.

2. Literature review

Defining how agents behave is a necessary and crit-
ical component when designing ABMs (Rand & Rust,
2011). Since early studies aimed to demonstrate

that complex patterns can emerge from the implemen-
tation of simple rules, most modellers followed the
“Keep It Simple, Stupid” (KISS) principle, so that they
were able to better understand how complexity
emerged from simple interactions among agents (Axel-
rod, 1997). Based on this tenet, agents are programmed
to perform static and simple rules, such as probabilis-
tic, reactive IF-THEN rules. For example, each cell in
the Game of Life (Conway, 1970), a two-state, two-
dimensional cellular automatonmodel, only carries out
three simple IF-THEN rules. However, the system
achievesmanypatterns fluctuating between chaotic and
ordered (Gardner, 1970). Other well-known initial
ABMs that followed the KISS tenet include the model
of segregation (Schelling, 1978) and Boids (Reynolds,
1987).

However, the KISS principle was challenged by the
researchers who suggested that, although simple rules
can be used to describe the reactions of some reactive
entities (e.g., viruses, bacteria, and animals), the notion
of simplicity limits the realism, and thus the applicabil-
ity, of human-related ABMS (Edmonds & Moss, 2005;
Sun, 2007). For example, the principle of KIDS – Keep
It Descriptive Stupid – recommends to consider a de-
scriptive and complex model at first, and then simplify
the model only where can be justified (Edmonds &
Moss, 2005). To enhance realism of simulation, some
human characteristics were introduced and modelled
for the purpose of mimicking human decision-making
as closely as possible. A variety of sophisticated archi-
tectures have been developed for sociological studies,
including the typical belief-desire-intention model and
its derivatives, normative architectures that consider
the influence of social norms, and other approaches
inspired by cognitive, psychology and neurology re-
search. For recent and detailed surveys of these mod-
els, we refer the reader to Adam and Gaudou (2016).
However, sociological, psychological and neurological
factors are often neglected in OR/MS studies. There-
fore, these architectures could only be applied to model
human-like entities (e.g., customers and pedestrians) in
several sub-discipline (e.g., marketing and transporta-
tion) research.

Unlike sociologists who almost solely focus onmod-
elling human decision-making process in ABMS,
economists have to study how an organisation behaves
in a market as well. Besides elementary formulas of
microeconomics, the ACE community has imported
many approaches from other domains to model firms.
For example, one of the most widely used approaches
is the NK model (Giannoccaro & Nair, 2016), which
was proposed by Kauffman (1993) to understand and
simulate biological systems. In theNKmodel, “N” is the
number of all agents’ discrete choices, while “K” stands
for the average number of interdependent choices. An
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NKmodel can be viewed as a fitness landscapemapping
from combinations of discrete choices onto payoffs.
Next, the model adopts trail-and-error algorithms to
search for the peaks with higher fitness on the land-
scape. The solution of the NK model indicates opti-
mal decisions for each agent. Since the agent’s choices
are assumed to be finite, the NK model can only be
employed to deal with discrete problems. This short-
coming also exists in most of the ACE models that
use evolutionary games and reinforcement learning,
since appropriate discretisation is necessary to avoid
the “curse of dimensionality” and high computational
complexity (Safarzyńska&vandenBergh, 2010; Tesfat-
sion & Judd, 2006). However, for the OR/MS problems
with continuous decision variables, it is challenging to
discretise these variables and evaluate the impact of
different discretisation settings due to the lack of agreed
guidelines.

The agent’s behaviours in OR/MS literature also
evolves from passively performing simple rules to ac-
tively achieving some objectives. For example, agent
behaviours in Thadakamalla, Raghavan, Kumara, and
Albert (2004) are based on probabilities, rather than
an OR model. In particular, different types of agents
are created with different probabilities, and the links
among agents are also generated randomly. In recent
agent-based OR/MS research, there is a trend that re-
searchers have paid increasing attention to discussing
and modelling how firms operate under constraints
(e.g., limited resources) in a complex business envi-
ronment. A common solution is that the agent is de-
signed to solve optimisation problems and thus achieve
its objective (e.g., minimising cost/risk or maximis-
ing profit/benefit) under several constraints. For in-
stance, Chan and Chan (2010) created a two-echelon
supply chain withmultiple suppliers and customers us-
ing ABMS. Each agent in this model attempts to reduce
its own total costs, including inventory cost, backo-
rder cost, penalty cost, etc. Moreover, in a competi-
tive online-to-offlinemarket built by He, Cheng, Dong,
and Wang (2016), service merchants are modelled as
profit-maximising agents, while customers are utility-
maximising agents connected by social networks.More
importantly, this online-to-offline market can be re-
duced to a competitive location and pricing problem.
Therefore, comparison between agent-based simula-
tion results and analytical findings serves as a theo-
retical validation of the model. These models not only
demonstrated a wide range of ABMS applications in
OR/MS research, but alsomotivatedus todevelop anew
approach to modelling agent decision-making process
in agent-based OR/MS studies.

In sum, although there are many ways to model an
agent’s decision-making process in the literature, they
fail to simultaneously fulfil the following requirements
in the OR/MS context – orienting to bounded rational

entities, handling discrete/continuous-variable issues,
considering information availability, and incorporating
OR/MS models. In light of the above observations, we
set out to propose the ESTOPT architecture as a new
approach to modelling agent decision-making process
for some applicable OR/MS problems.

3. Applicable OR/MS research topics of ABMS

In this section, we survey the literature and list several
typical OR/MS research topics which are often inves-
tigated using ABMS. In addition, the features of these
topics are analysed to help readers identify potential
research questions applicable to employ the ESTOPT
approach.

The OR/MS research areas where ABMS could be
helpful include the following:

• Supply chain evolution. In reality, a supply chain
could be a hierarchical system or a complex net-
work, e.g., scale-free (Pathak, Day, Nair, Sawaya, &
Kristal, 2007; Pathak,Dilts, &Biswas, 2007). ABMS
is able to model any structure of supply chain due
to its flexibility, allowing the modeller to examine
how the supply chain evolves. For example, fac-
ing a disruption in the supply chain, firms can be
modelled as agents selecting new partners to re-
duce the negative effects caused by the disruption.
Therefore, the researcher could understand how
the structure of a disrupted supply chain evolves
with an individual firm’s behaviours (Nair &Vidal,
2011).

• Transportation management. A transportation
system is very complex because it consists of amul-
titude of vehicles, aswell as pedestrians. These enti-
tiesmake adaptive decisions in real time. For exam-
ple, the drivers can be viewed as agents
searching for the shortest path based on current
traffic situation. For the transportation managers
who attempt to understand and optimise the sys-
tem, controlling traffic lights is a possible way to
affect the behaviours of agents. ABMS is a powerful
method to help transportation management since
many adaptive agents can be easily generated for
simulation (Chen & Cheng, 2010).

• Service systems planning. Many mathematical
models have been developed for service system
planning, including queuing theory and facility lo-
cation. However, feedback from service requesters
are often neglected. ABMS provides the possibility
for introducing non-linear feedback mechanism.
For example, the service requesters may share
his/her word-of-mouth regarding service
quality of a provider, influencing the choices of
other agents (He et al., 2016). Therefore, ABMShas
been employed to generate new service concept in
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health care systems (Kim & Yoon, 2014).
• Relationships in business and technology ecosys-
tems. ABMS can be applied in this topic because
it has the capability of dealing with the heteroge-
neous entities of different roles (e.g., firms and cus-
tomers), as well as the complicated relationships
such as competition, cooperation,
co-evolution, co-specialisation, and knowledge ac-
quisition (Carayannis, Provance, & Givens, 2011;
Molinero, Riquelme, & Serna, 2015; Robertson &
Caldart, 2009). Based on these relationships, more
complicated business/technology ecosystemcanbe
established with the help of game theory, data en-
velopment analysis andmany OR-relatedmethods
(Carayannis, Provance, & Grigoroudis, 2016).

• Diffusion of information and innovations. The
ABMS technique has been extensively applied to
study this important topic in marketing research,
since both individual-level heterogeneity and so-
cial network topology can be considered (Watts &
Dodds, 2007). This topic is also investigated in epi-
demiology to reduce further transmission of dis-
eases (Rahmandad & Sterman, 2008). These stud-
ies help decision-makers understand how network
structure and the role of hubs affect diffusion
(Rand & Rust, 2011).

From the above analysis, we suggest that ABMS can
be very suitable to study the OR/MS issues with the
following three features:

(1) When modelling agents’ adaptive behaviours is
required. In many managerial systems, the
agent’s autonomy cannot be simply neglected.
To model such systems in more reasonable way,
the modeller should describe how an agent be-
haves in different situations. One solution is to
examine the goals and constraints of agents, so
that their adaptive behaviours can be modelled
as an optimisation problem.

(2) When the environment’s topology is complex
and/or dynamic. Possible topologies of a man-
agerial system include two-dimensional lattice,
hierarchy and complex networks (e.g., scale-free,
small world). Modelling these topologies and
their evolutions mathematically is challenging,
especially when some agents enter or exit the
environment. In contrast, ABMS is able to sim-
ulate complex and dynamic environment due to
its flexibility.

(3) When individual-level heterogeneity and non-
linear feedback should be considered. Entities
in a managerial system are heterogeneous, since
they could have different objectives, preferences,
roles and information sets. Individual-level het-
erogeneity, together with complex topology, of-
ten produces non-linear feedback among agents.

For more general criteria for when to apply ABMS,
we refer the reader to Macal and North (2014) and
Macal (2016).

4. The ESTOPT approach

4.1. The architecture andmechanism

Figure 1 illustrates the architecture of the ESTOPT
approach. As a complex adaptive system (CAS), a basic
ESTOPT-style ABM consists of the following elements:

(1) Environment and the agent’s input. In this archi-
tecture, an agent called “Environment” interacts
with all the other agents in the following ways.
(1) The environment monitors all agents. Some
events and rules may be triggered and performed
by the environment when some conditions related
to agents aremet. For example, when a firmagent is
bankrupt, the environmentmay be programmed to
remove it from themodel. (2) The environment re-
ceives actions from agents. The action concept will
be discussed later. (3) The environment provides a
payoff for each agent based on many factors, such
as previous action(s) of the agent, other agents’ im-
pacts, and stochastic components in the model. (4)
The environment provides information for each
agent, assuming that each agent only considers in-
terested or observable information. In otherwords,
agents in ESTOPT are bounded rational because
they have limitations in accessing the full infor-
mation of the environment. Therefore, the agent’s
input is comprised of two parts: payoff and infor-
mation.

(2) Historical data. After observation, the agent
should record related information for estimation.
Without recording, the agent cannot learn any-
thing frompast experience.Themost important in-
formation to be recorded could be previous actions
and payoffs, which can be analyzed to guide future
decision-making. Besides, the agent may need to
collect some uncertain but observable information
in itsORmodel. For example, a driver agent tries to
solve its shortest path problem, in which the time
needed to travel from node A to B is assumed to
be unknown and dependent on other agents’ path
choices. In this case, the agent should memorise
the travel time information of each visited edge
for estimation. In practice, what kind of historical
data should be collected, how to assign weights to
each record, and how to aggregate information are
highly problem-dependent.

(3) Estimation. For an ESTOPT agent, its goal of col-
lecting and learning from historical data is to per-
form more accurate estimations about uncertain
parameters of the ORmodel. Given sufficient data,
many approaches can be incorporated to estimate
uncertain information, such as point and interval
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Figure 1. The architecture of the ESTOPT approach.

estimation, regression, prediction, Bayes’ theorem
and othermethods of probability theory and statis-
tics (see, e.g., He, Dong, & Yu, 2018). In some
OR models such as robust optimisation, it could
be unnecessary to estimate the precise values of
parameters. In such cases, only some distribution
assumptions need to be tested in this stage. An-
other important issue is the portion and weight of
previous historical records used in estimation. For
example, if the weighted moving average method
is applied to forecast an indicator, we need to de-
termine how many recent periods should be con-
sidered, and what their weights are. A discount
factor can be borrowed from reinforcement learn-
ing to weigh the importance of recent practices
and information. Generally, as simulation contin-
ues, more historical data will be collected, making
the estimated results more stable and convincing.
Therefore, the ESTOPT agents are able to learn
from the past.

(4) The OR model. This critical component consists
of two parts. The first part is basic knowledge,
i.e., true and accurate information. A typical ex-
ample is the structure of the OR model, which
includes the objective function representing the
goal of the agent, and the constraints that the agent
has to consider. Typically, most attributes of the
agent (e.g., individual preference, resources and
predefined thresholds) are also considered as ba-
sic knowledge of the OR model, because they are
either measurable, controllable or independent

of external influence. For example, a firm agent
knows that its inventory capacity is exactly 50 units.
The second part of the OR model is the uncertain
information that need to be estimated, such as
other agents’ choices, uncertain parameters and
distribution of stochastic variables.

(5) Optimisation. When the ORmodel is well formu-
lated and its uncertain parameters are estimated, it
needs to be solved. Mathematical analytics, heuris-
tic searching methods, and other approaches can
be employed to find the optimal (or near-optimal
for the sake of high computational complexity)
solution for the agent.

(6) Solution and action. The solution embraces the
new values of discrete/continuous decision vari-
ables. Hence, the agent’s decisions are updated and
will be sent to the environment as a new action.

To conclude, in each time step, an ESTOPT agent re-
ceives a payoff and observes information from the en-
vironment. In the first stage, collected observations are
used to estimate uncertain but required information of
the OR model. After estimation, the OR model is for-
mulated and can be solved in the second stage. Finally,
the solution renews the agent’s actions, which will be
sent to the environment for new payoff.

4.2. The exploration-exploitation trade-off

The exploration-exploitation trade-off exists in learn-
ing approaches because the agent needs
to decide whether to obtain new knowledge or
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to use that knowledge to improve performance
(Berger-Tal, Nathan, Meron, & Saltz, 2014). For exam-
ple, when playing games like chess, we have two deci-
sions: play the current best move (exploitation), or play
an experimental move (exploration). Another example
is oil drilling: drill at the best known location (exploita-
tion), or drill at a new location (exploration). Similarly,
the agent in ESTOPT architecture has two decision-
making modes: (1) Optimally – the agent solves its OR
model and performs the optimal action to enlarge its
payoff. (2) Randomly – the agent makes any feasible
decision to explore its solution space.

In ESTOPT architecture, we introduce a switching
probabilityρ ∈ [0, 1] to determine themodeof decision-
making. In each time step, the agent picks a random
number from the uniform distribution U(0, 1). If the
randomnumber is less than ρ, the agent acts randomly;
otherwise, optimally. In the simplest case, ρ is a small
number (e.g., 0.05) and remains unchanged. At the
beginning of simulation, however, the information is
insufficient for the agent to make optimal decisions be-
cause the agent has not explored the solution space yet.
Therefore, the switching probability ρ can be a func-
tion of some changing variables. For example, ρ(t) =
1 − 1−ε

T t where variable t is the current time step,
constantT can be themaximum time step and constant
ε can be 0.05 or 0. In this linearly-decreasing case, the
agent only explores the solution space at first because
ρ(0) = 1. As ρ decreases, the probability of making
arbitrary decisions continues to decline since the agent
has significantly investigated the possible solutions. The
agent will be more likely to optimise its decisions when
ρ becomes smaller. Therefore, this probabilistic mech-
anism is able to improve the agent’s decisions at the end
of simulation.

4.3. Advantages

The advantages of using the ESTOPT approach are as
follows:

(1) It takes full advantages of the limited information
to simulate agent decision-making process. The in-
formation availability factor is considered in the es-
timation stage. In this stage, available information
can be fully utilised to formulate the agent’s OR
model. If more information becomes accessible,
the ESTOPT approach can easily use it to further
reduce uncertainty in decision-making process, al-
lowing the modeller to observe and examine the
influence of disclosing more information on the
agent’s behaviours and the model’s performances.

(2) It provides a new way to solve complex OR mod-
els, the complexity of which often depends on the
number of involved entities. After modelling these
entities as ESTOPT agents, each entity will have
its own OR model which is much simpler. There-

fore, burdensome OR/MS models can be easily
reduced to micro-level decentralised optimisation
problems to guide agent’s behaviours.

(3) It perfectly mimics the trial-and-error method,
which is often used by an entity who has little
knowledge about the environment in which it ex-
ists. Initially, the agent has no knowledge about the
uncertain information. Hence, it tended to tenta-
tively test many possible options, and then obtain
feedback from the environment. As the simulation
iteratively runs, the ESTOPT agent will be able to
collect sufficient information to make better and
eventually optimal or near optimal decisions. In
this sense, the ESTOPT is a replication of typi-
cal trial-and-error process (Whitehead & Ballard,
1991) with low information.

In view of the above benefits, we suggest that the
ESTOPT approach has great potential to model agent
decision-making process for applicable OR/MS prob-
lems.

4.4. Implementation

This section contains technical details of implementing
ESTOPT for the reader who is assumed to be familiar
with object-oriented programming (OOP). We recom-
mendOOP paradigm because an agent can be naturally
viewed as an object according to the corresponding
class with predefined attributes and methods. For ex-
ample, if an ABM is composed of five similar firms
and ten similar customers, only two classes – firm and
customer – need to be designed. All the 15 agents are
instances of these two classes, and they could be het-
erogeneous due to different values of some attributes.
In order to generate multiple agents, we suggest the
following three steps to create an ESTOPT-style class
as a template.

Step 1: Analyse and convert variables to attributes.
For an ESTOPT agent, its variables can be divided into
two groups. (1) Exogenous variables (XVs) whose val-
ues are given by themodeller and remain unchanged af-
ter agent initialisation such as customer’s gender, mer-
chant’s maximum capacity, minimum profit, and other
predefined thresholds. For an ESTOPT agent, its per-
sonal XVs often relate to basic knowledge. Therefore,
these variables can be coded as final attributes, i.e.,
constants. (2) Endogenous variables (NVs) that need
to be updated in each time step, e.g., other rival’s visible
attributes like their new prices, firm’s recent inventory,
cost, and revenue. In fact, one of main reasons for cod-
ing a class’s methods is to update these NVs. Therefore,
it is important to check if all NVs are refreshed by in-
use methods before debugging and running. For an
ESTOPT agent, its personal NVs include observed in-
formation, obtained payoff, and estimated parameters,
especially decision variables.
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In OOP, another property of attributes is accessi-
bility – whether an attribute can be accessed by peers
or other types of agents. In the business context, it is
normal for participants to conceal sensitive informa-
tion such as business secret, firm’s unit cost, customer’s
willingness-to-pay, etc. Therefore, the model should
consider whether an attribute can be accessed by other
agents. If not, it should be coded as a private attribute;
otherwise, it is a public field of the agent class. Note that
in many OOP languages such as Java, public attributes
can be programmed as private attributes and then ac-
cessed by others who perform public functions such as
public double getPrivateAttribute().

Step 2: Programmethods. Some key methods need
to be created, such as constructor, receiveInput(),
recordData(), estimateParameter(), solveModel(), take-
Action(). It is suggested that all XVs’ values are de-
fined by the constructor or a similar function, and
all NVs have to be updated at least once by all other
methods. In addition, we recommend that the mod-
eller employs popular off-the-shelf software and tools
to perform complex and important tasks such as es-
timation and optimisation. For example, the Python
community has developedmanyopen-source andpow-
erful packages for scientific computing, such as scipy
for general optimisation and statical analysis, lmfit for
non-linear optimisation and curve fitting, networkx for
analysing complex networks, and sklearn for machine
learning. Using these packages not only accelerates the
model development, but also facilitates standardising
the model, so that the model and simulation results can
be reproduced, validated and compared.

Similarly, methods of a class can be either private
or public. Here we suggest that all methods are pro-
grammed as public functions, so that they can be called
by the Environment agent, which will be discussed in
the next step.

Step 3: Link to the Environment agent.We suggest
to create one container-like Environment agent which
performs the following useful tasks. Firstly, it collects
all actions and changes of agents’ public attributes. The
collected data can be used to debug code, draw time
series charts and most importantly, provide required
information and corresponding payoffs for the agents.
Secondly, it organises the sequence of the agents’ be-
haviours and interactions, which are programmed as
public methods of the agent class. Therefore, the Envi-
ronment agent should be able to call relatedmethods of
all agents. Thirdly, it terminates the simulation when
the model meets the stop criteria, and then reports the
final results. Lastly, if it is required to model an enter
and exit mechanism of agents, then the Environment
agent needs to control the number of agents by creating
and removing instances.

4.5. Modelling anOR/MS problem as an
ESTOPT-embedded ABM

Modelling ESTOPT agents is just one step to develop an
ABM. If an OR/MS problem is deemed to be applicable
for ABMS according to the conditions summarised in
Section 3, the first step is to decide the boundary of
the ABM. It is infeasible to consider all aspects of all
relevant entities in a complex system. The modeller
should exclude unnecessary factors and focus on the
most important elements associated with the research
problem. Usually, the topology of the system, the gen-
eral classes of agents, and the basic relationships among
and within agent classes should be determined in this
step.

Next, the ESTOPT approach is applied to simu-
late the decision-making process of each agent class.
Following the three steps in Section 4.4, the agents’
behaviours can be simulated and thus an ESTOPT-
embedded ABM is established. However, successful
ABM requires verification and validation before using.
The modeller should carefully verify if the ABM is
implemented correctly, e.g., it has no errors and bugs.
In contrast, validation is more difficult since it is con-
cerned with checking if the ABMmeets the researcher’s
need. This will be discussed in more detail in Section
7.1.

Since an ABM often contains many random factors
(e.g., the probabilistic mechanism for balancing explo-
ration and exploitation), it should be performed many
times to ensure robust outputs against the random-
ness. Therefore, it could be necessary to assign different
but fixed random seed for each simulation, so that all
experiments can be reproduced. Finally, the modeller
should decide and collect the output of the ABM (e.g.,
performance measures) for further statistical analysis.

In the following two sections,we introduce andbuild
twoABMs to demonstrate the implementation andper-
formance of the ESTOPT approach. The first ABM is
based on a behavioural experiment of the contribution
game (Isaac, McCue, & Plott, 1985; Isaac & Walker,
1988), the result of which serve as an empirical bench-
mark of the ESTOPT-embeddedABM. The other ABM
is compared with an artificial price war, in which the
agent can access varying degrees of information about
the environment. The simulation results are compared
with theoretical solutions. For a realistic application of
theESTOPTapproach,we refer the reader toHe,Xiong,
Ng, Fan, and Shoemaker (2017).

5. Model A: The contribution game

5.1. Model introduction

The contribution game, also known as the public goods
game, is a classic model that has been extensively
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studied by sociologists, economists and scholars of pub-
lic management (Isaac et al., 1985; Isaac & Walker,
1988). We choose this model for two reasons. Firstly,
it is quite simple as it only contains one type of regular
agent. Secondly, a recent study (Nax, Burton-Chellew,
West, & Young, 2016) has recruited 236 participants to
play this gamewith incomplete information. Therefore,
the experimental results from Nax et al. (2016) can be
used to validate our ESTOPT approach assuming that
these participants are bounded rational players.

Suppose that there are n agents (denoted by set A),
and each agent in the game is given a finite budget
Bi, i ∈ A in each time step. The agent i is required to
make a non-negative contribution ci which should be
less than or equal to the given budget, i.e., ci ∈ [0, Bi].
Next, the agent i will receive its payoff πi from the
environment according to the following rule:

πi = Bi − ci + r
n

∑
a∈A

ca = (
r
n

− 1)ci + Bi (1)

+ r
n

× C−i,

where r is the rate of return, and C−i denotes the total
contributions of all the other agents. Nax et al. (2016)
noted that for all agents, the Nash equilibrium (Nash,
1951) is either ci = 0 if r < n (i.e., free-riding), or
ci = Bi if r > n (i.e., fully contributing).

Next, we describe how to convert this contribution
game to an ESTOPT ABM by following the steps de-
scribed in Section 4.4.

5.2. Create an ESTOPT-embedded ABM

Step 1: Analyse and convert variables to attributes.
Equation (1) implies that agent i only has three vari-
ables: decision variable contribution ci as anNV, budget
Bi as an XV, and objective payoff πi as an NV to be
maximised. The other three variables belong to the
Environment agent, including the rate of return r as an
XV, the number of total agents n as an XV, and C−i as
an NV. According to the standard experiment settings
(Nax et al., 2016), let budgetBi = 40 and contribution ci
be integers for all agents. In addition, the rate of return is
public knowledge, with the value of 1.6 under Scenario
A1 and the value of 6.4 under Scenario A2. However,
for each agent, variables n and C−i are not observable
and thus need to be estimated. Table 1 reports these two
classes as well as their attributes and related properties.

Step 2: Program methods. The budget is the only
XV of the Agent class, and its value can be assigned
by the class’s constructor function. In each time step,
the Environment sends payoff to the agents according
to Equation (1). After receiving the input, the agent
i records (ci,πi). Therefore, in time step t, the agent i
should have t − 1 historical records
(X,Y) = {(ci, τ , πi, τ )}t−1

τ=1 to fit the following regres-

sion model:

Y =
(

r
a0

− 1
)
X + 40 + r

a0
a1, (2)

where X is the explanatory variable, Y is the dependent
variable, a0 and a1 are parameters to be estimated, and
r = {1.6, 6.4} is a known constant. In the estimation
stage, the twoABMs attempt tominimise the sumof the
squared deviations after considering all previous data
points that are equally weighted. We incorporate the
lmfit package (version: 0.9.2) and use the Nelder-Mead
method to fit the regressionmodel (2). Suppose that the
estimated parameters are ˆa0,t and ˆa1,t , then the agent’s
OR model can be expressed as follows:

max
ci,t

πi,t =
(

r
ˆa0,t − 1

)
ci,t + 40 + r

ˆa0,t ˆa1,t , (3)

s.t. 0 ≤ ci,t ≤ 40, ci,t ∈ Z, (4)
where r ∈ {1.6, 6.4}. (5)

It is straightforward to solve this linear model, since
the optimal solution is 0 (when r < ˆa0,t), or 40 (when
r > ˆa0,t). Here, we employ the scipy package (version:
0.16.0rc1) to search for the optimal ci,t .

Step 3: Link to the Environment agent. We create
an Environment agent to receive all contributions from
agents and send them payoffs according to Equation
(1). Using the data and the termination condition from
the study by Nax et al. (2016), there are four agents
involved in each simulation, and themodel coded using
Python 2.7.10 stops after 20 time steps. Besides, let
constants ε andT be 0 and 20, the switching probability
ρ(t) = 1 − 1−ε

T t = 1 − t/20 according to the linearly-
decresing function discussed in Section 4.2.

To conclude, the ESTOPT elements of Model A
are identified as follows. The Environment receives
all contributions from agents and sends them payoffs
according to Equation (1). For agent i, its input is
the gained payoff πi; its solution and action is the
contribution ci. The agent records its previous (ci, πi)

as historical data to estimate unknown parameters in
Equation (3) using regression. Its OR model is ex-
pressed as Equations (3) and (4), which is optimised
by a general search algorithm.

5.3. Simulation and results

We have performed themodel 1000 times to ensure ro-
bust outputs against randomness in the agent’s decision-
making process. The number of simulation runs is de-
termined arbitrarily. In practice, however, this number
should be big enough to follow the “Law of large num-
bers” (Kolmogorov, 1950). All the 1000 independent
simulations can be reproduced by assigning {0, 1, 2,
. . . , 999} as random seeds.We have created 4000 agents
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Table 1. Classes and attributes in Model A: The contribution game.

Class Attribute Type Accessibility Remark

Agent ci NV Private to peers only Contribution
Bi XV Private Budget
πi NV Private Payoff

Environment n XV Private Number of total agents
r XV Public The rate of return

C−i NV Private Other agent’s contributions

Table 2. Simulation, empirical and theoretical results of Model A: The contribution game.

Scenario Data source Mean c % of zero-contribution % of full-contribution

A1, r = 1.6 Nash equilibrium 0 100% 0%
Nax et al. (2016), Figure 2 5 Not provided Not provided
ABMS 0.56 98.6% 1.4%

A2, r = 6.4 Nash equilibrium 40 0% 100%
Nax et al. (2016), Figure 2 31 Not provided Not provided
ABMS 30.02 24.95% 75.05%

Table 3. Classes and attributes in Model B: The price war.

Class Attribute Type Remark

Firm pi NV Price
qi NV Received demand
πi NV Profit
Pi XV Upper bound of price
ci XV Unit cost

Market n XV Number of total firms
Q XV Total demand
a, b XV Parameters of market preference in Equation (6)

and collected their contributions at the end of each
simulation.

Table 2 reports three types of data – the theoretical
Nash equilibrium, the experimental findings of Nax et
al. (2016) and the simulation results of our ESTOPT-
embedded ABM. As mentioned before, the Nash equi-
librium is either zero-contribution when r = 1.6 < 4,
or full-contribution when r = 6.4 > 4. However, such
theoretical conclusion is built upon the assumption
that all agents play with complete information. In both
the behavioural and computational experiments, agents
have to estimate uncertain information like the number
of other players and their contributions. This leads to
deviations from theNash equilibrium. The critical issue
faced by the agent is to decide which is larger, either
r or a0 (i.e., estimated n). It can be observed from
Table 2 that, when r = 6.4 is slightly greater than
the true n = 4, 24.95% of the agents would estimate
that r is less than n after random initial explorations.
Therefore, the mean contribution of 4000 agents under
Scenario A2 is 30.02, which is very close to the 31
obtained from the behavioural experiment. This reveals
that the ESTOPT approach is a promising architecture
to simulate agent decision-making process when the
information is limited.

The difference between the results under Scenario
A1 and A2 is that, when r = 1.6 is much smaller
than the true n = 4, only 1.4% of the agents have
made wrong estimation, and the mean contribution

of 0.56 is closer to the Nash equilibrium, 0, than to
the experimental result of 5 reported by Nax et al.
(2016). Here, we provide two reasons to account for
this observation. Firstly, the free-riding behaviour is
negatively viewed upon. Therefore, even though the
participants cannot observe the contributions of others,
they tend to be less selfish and are even willing to
bear an affordable financial loss in practice. A similar
finding has been observed in the real-life behaviour
of individuals in the prisoner’s dilemma where people
have displayed a systemic bias towards cooperative be-
haviour, rather than being rational and betraying their
partners (Fehr&Fischbacher, 2003). The second reason
is that the investment amount under Scenario A1 is less
than that under ScenarioA2 (5 vs. 31).When the invest-
ment amount becomes larger, people are more likely to
exhibit rational, self-interested behaviour. These two
interacting reasons arewhyparticipantsmay contribute
a small amount to the game when r = 1.6.

Based on the above discussion, we suggest that our
ESTOPT approach is able to closely mimic rational hu-
man behaviours for similar agent-based OR/MS stud-
ies. On the other hand, as a limitation, it excludes some
factors which couldmotivate agent to act in a less ratio-
nal self-interested manner. To alleviate this shortcom-
ing, the modeller is suggested to consider, select and
integrate these factors into the ESTOPT architecture
according to the research purpose.

6. Model B: The price war

6.1. Model introduction and scenario design

The above contribution game has explicitly described
how to create ESTOPT agents and build a simple ABM.
In this price war ABM, agents are competing for re-
sources rather than collectively contributing. We con-
centrate on examining the influence of information
availability on firm’s decision and profit.

Suppose that there are n firms (denoted by set F)
competing for market demand by pricing, and one
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Figure 2. Scenario design for Model B: The price war.

environment-like Market agent that calculates corre-
spondingdemand for each agent. The attributes of these
two classes are summarised in Table 3, whose informa-
tion accessibility vary across designed scenarios. The
Market agent computes the demand of firm iwith price
pi, denoted by qi(pi), according to the following rule:

qi(pi) = Q ∗ eb−api∑
f ∈F

eb−apf
. (6)

Equation (6) is the classicmultinomial logit demand
model commonly used in revenue management and
marketing literature (Besanko, Gupta, & Jain, 1998;
Guadagni & Little, 1983). The function b − api asso-
ciated with firm i ∈ F can be regarded as an approxi-
mation or surrogate for the “attractiveness” of its price
pi. All parameters of Equation (6) are non-negative.
Hence, a firm with higher price tends to capture less
demand from the market. For firm i, its goal is to
maximise profit, i.e., πi = (pi − ci) ∗ qi.

Next, we consider several scenarios from the per-
spective of a firm in terms of its ability to access infor-
mation from its peers and the market.

Scenario B1. Each firm has no information about
its peers and the market. In other words, all firms only
know their own attributes and demands received from
themarket. To simulate firm’s decision-making process
under such a black-box scenario, we assume that all
firms believe that there is a negative linear relationship
between price and demand. Here, theORmodel of firm
i is stated as follows:

max
pi

πi = a0(pi − ci)2 + a1(pi − ci) + a2, (7)

s.t. ci ≤ pi ≤ Pi, (8)
where a0 < 0, a1 > 0. (9)

The above OR model with a quadratic objective func-
tion (7) ensures that the optimal p∗

i = ci − 0.5a1/a0 >
ci. Constraint (8) imposes a lower bound and an upper
bound onfirm’s pricing.However, Equation (6) implies
that the true price-demand relationship is not linear.
Therefore, firms under Scenario B1 havemade a simple
but wrong assumption about the market.

Scenario B2. After conducting primary market re-
search, all firms have gained basic knowledge about the
true price-demand relationship. However, they still do
not have information about other attributes of their
peers and the market. Therefore, its OR model is ex-
pressed as follows:

max
pi

πi = (pi − ci) × a0 × ea1−a2pi

ea1−a2pi + a3
, (10)

s.t. ci ≤ pi ≤ Pi, (11)
where a0, a1, a2, a3 > 0. (12)

In Equation (10), the third component of the right-
hand side copies from Equation (6), which defined the
demand qi. In fact, the uncertain a0, a1, a2, a3 under
Scenario B2 correspond to the actual Q, b, a and other
firms’ current “attractiveness” based on their prices.

Scenario B3. We further assume that the actual val-
ues of the market’s attributes are public information,
but other firms’ information are still unobservable.
Compared with Scenario B2, parameters a0, a1, a2 are
replaced by true Q, b, a in firm’s OR model. Therefore,
only one variable a3 (i.e., other firms’ current “attrac-
tiveness” based on their prices) has to be estimated by
the lmfit package.

Scenario B4. All information has become public.
Therefore, the Nash equilibrium can be calculated by
solving the following equation group (13) without run-
ning the ABM.
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂π1
∂p1 = Qeb−ap1∑

f ∈F eb−apf
+ a(c1 − p1)Qeb−ap1∑

f ∈F eb−apf
− a(c1 − p1)Qe2(b−ap1)( ∑

f ∈F eb−apf
)2 = 0,

. . . ,
∂πn
∂pn = Qeb−apn∑

f ∈F eb−apf
+ a(cn − pn)Qeb−apn∑

f ∈F eb−apf
− a(cn − pn)Qe2(b−apn)( ∑

f ∈F eb−apf
)2 = 0.

(13)

Table 4 summarises the settings of all the scenar-
ios in terms of accessible information (basic knowl-
edge). From black box (B1) to white box (B4), firms are
able to observe more information for their decision-
makingprocess. Therefore, this table also represents the
bounded-rationality levels of the agents under different
scenarios. More complex or realistic scenarios can be
created for different research purposes.

The ESTOPT elements of Model B are identified as
follows. TheMarket receives all prices from agents and
sends each agent demand according to Equation (6).
For firm agent i, its input is the gained demand qi; its
solution and action is the price pi. The agent records
its previous (pi, πi) as historical data to estimate un-
known parameters in Equation (7) (or Equation (10))
using regression. Its OR model is expressed as Equa-
tions (7) and (8) (or Equations (10) and (11), which is
optimised by a general search algorithm.

6.2. Simulation and results

To start the simulation, we first assign arbitrary values
to the market’s XVs. In particular, n = 9, Q = 1000,
a = 1, b = 10. Besides, all firms are homogenised by
sharing same unit cost and upper bound of price, i.e.,
ci = 0, Pi = 10, ∀i ∈ F . Therefore, the solution of
Equation (13), also the Nash equilibrium of Scenario
B4, is p∗

i = ci + n/(a(n − 1)) = 1.125, ∀i ∈ F , and
each firm’s profit is π∗ = (p∗ − c)Q/n = 125. Figure
2 provides a curve that demonstrate the price-profit
relationship for a firm whose competitors all choose
1.125 as their prices. For the other three scenarios,
the simulation is also performed 1000 times and thus
27,000 firms are created in total. In each simulation,
the maximum number of time step is arbitrarily set
to be 100, and the switching probability ρ(t) = 1 −
t/100. Results in the final time step (i.e., 100-th tick)
are reported in Table 5 and illustrated in Figure 3.

It can be found that, firms under Scenario B1 ob-
tained the lowest level of profit since they have mis-
judged the market rules. After fitting the wrong re-
gression model (7), most firms have selected either
extreme low (close to 0) or high prices (about 4), leading
to the largest price standard deviation (STD) and the
fewest profit. Therefore, it is essential for firms to survey
the market. From Scenario B2 to B3, the uncertainty
in firm’s decision-making decreases as less parameters

need to be estimated. Therefore, due to greater infor-
mation and higher degree of market transparency, all
four indicators listed in Table 5 decline monotonically
and become approximate to the Nash equilibrium so-
lution (i.e., Scenario B4). These simulation results are
consistent with experiment design, implying that all the
three ESTOPT-embedded ABMs are valid.

In conclusion, we have designed four scenarios and
conducted thousands of experiments with the price war
ABM. Simulation results under Scenario B1, B2, and B3
indicated that information accessibility plays an essen-
tial role in firms’ price and profit distributions. Besides,
these results are approximate to the theoretical Nash
equilibriumof Scenario B4with increasing information
accessibility. Therefore, the ESTOPT-embeddedABMS
paradigm is able to produce correct and meaningful
findings for OR/MS research.

7. Discussion

In this section, we discuss several critical problems of
agent-based OR/MS research.

7.1. Model validation

In themajority of theABMs such as the price warABM,
the parameter settings and used data are not empirically
grounded. Therefore, how can an ABM be validated?

Validation is a crucial step in modelling ABMs.
However, there exist many difficulties such as random-
ness in simulation results, lack of standard techniques
for comparing ABMs, and having a large number of
parameters involved (Rand & Rust, 2011). Besides, de-
tailed micro-level data are needed for empirical vali-
dation since ABMs are generally built in a bottom-up
way. However, obtaining high-quality individual-data
is very costly. Consequently, empirical ABMmodelling
and validation are only possible for primitive ABMs
with few agents and simple rules. Compared with that
for ABSS and ACE research, ABMs for OR/MS studies
confront more serious issue: a firm’s behavioural data,
such as operations records, are very sensitive inbusiness
environment. As a result, it is difficult to obtain firm-
level behavioural data. On a positive note, classic OR
models established on solid mathematical ground can
be used to validate similar complex ABMs. Therefore,
we suggest the following validation solutions in differ-
ent situations.
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Table 4. Scenario design of Model B: The price war.

Scenario Basic knowledge Unknown information

B1 Own(q, P, c) Equation (6), Market(n,Q, a, b), Rivals(p, q,π , P, c)
B2 Own(q, P, c), Equation (6) Market(n,Q, a, b), Rivals(p, q,π , P, c)
B3 Own(q, P, c), Equation (6), Market(n,Q, a, b) Rivals(p, q,π , P, c)
B4 Complete information –

Table 5. Simulation and theoretical results of Model B: The price war.

Scenario Mean of price STD. of price Mean of profit STD. of profit

B1 1.960 1.778 21.113 34.490
B2 1.761 0.736 167.833 50.872
B3 1.215 0.015 135.039 11.354
B4 1.125 0.000 125.000 0.000

(a) Price distribution (b) Profit distribution

Figure 3. Price and profit distributions of 27,000 firms under four scenarios.
Notes: From top to bottom, the three points on red lines are the maximum, mean, and minimum of firm’s prices and profits.

The first solution is theoretical validation if suitable
empirical data are not available. In this situation, the
agents’ behaviours should be modelled based on solid
theoretical reasoning, common sense, widely-accepted
concepts, well-justified assumptions, classic models/
frameworks, etc. Since classic OR models are relatively
simple, ABMs can be reduced to them by removing
some elements or simplifying the agents’ behaviours.
Therefore, the simulation results of these reducedABMs
should be in good agreement with that of the classic
models. Take the price war model, for example, our
simulation results are approximate to themathematical
conclusions (i.e., Nash equilibrium) after homogenis-
ing agents and enhancing agents’ ability to access accu-
rate information. However, additional parts built upon
the reduced ABM can hardly be further validated with-
out new benchmarks or empirical data. Due to this
issue, we suggest that theoretical validation can only
be used as a basic or preliminary approach to ABM
validation.

The second solution is empirical validation when
some real-world data can be collected. Official statis-
tical surveys, industry reports, academic papers, media
news, publications, and other data sources only provide
aggregated data. For ABMS, such data can be used to
determine the initial settings of experiments, calibrate
the values of agents’ XVs, and finally evaluate the fitness
of simulation results. We have performed and demon-
strated empirical validation when building an agent-
based contribution game model in Section 5. However,
using aggregated data to initialise the simulation and
to assess the final outputs could be problematic. For
example, when should the simulation stop? The length
of simulation matters since it directly affects the final
results. In some ABMs, a time step may correspond
to either an hour, a day, a week or a month. But in
many ABMs, there could be no link between the sim-
ulation tick and time period in reality. This might lead
to two consequences. Firstly, without time calibration,
it is difficult to compare and align simulation results
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Figure 4. Four different functions of the switching probability ρ(t). In time step t, if a random number ∈ [0, 1] is smaller than ρ(t),
the agent will make a random decision.
Note: Generally, the agent becomes less exploratory as the function changes from ρ1 to ρ4.

with empirical time series data. Secondly, there is no
appropriate choice of the maximum time step, which
often serves as a criterion of simulation termination.
These two issues require in-depth research.

The further and possibly the ultimate
validation method entails massive temporal-spatial
individual-level data. Based on such “big data”, entities
could be near-perfectly classified, learned, predicted,
and finally replicated by agents. Currently, this ten-
dency appears in some research and practice, where
temporal-spatial individual-level data are collected
frombehavioural experiments,mobile/wearable devices,
ubiquitous sensors, the Internet of things, etc (Kim,
Ok, Kumara, & Yee, 2010; Reaidy, Gunasekaran, &
Spalanzani, 2015). In this sense, the goal of the ABMS
technique is to blur the boundary between simulation
and reality.

7.2. From understanding to guiding

Many agent-based OR/MS studies attempt to under-
stand complex systems by changing some XVs of the
ABM, and examining how changed parameters affect
predefined performance indicators of the system. Based
on the relationshipbetween theseparameters andmodel
outputs, is it possible for decision makers to guide the
evolution of the system?

Before answering this question, we first introduce
two concepts associated with the term agent: multi-
agent system (MAS) and agent-based modelling. The
first concept stemmed from the discipline of distributed
artificial intelligence, which attempts to design smart
agents (e.g., robots), unite them as a MAS, and solve

specific practical or engineering problems. A MAS is
usually hierarchical, where agents may compete, nego-
tiate, and interact with one another in order to accom-
plish a certain task that a solo agent cannot achieve.
Therefore, a leader agent is often created to be respon-
sible for allocating resources and coordinating the other
agents in the presence of conflicts. Optimisation meth-
ods are commonly involved when structuring agent be-
haviour and improving system performance. The sec-
ond concept – agent-based modelling – underpins all
of themodels discussed in this paper. It originates from
complex adaptive system (CAS) theory proposed by
Holland (1996), a sub-domain of the complex systems
research. As mentioned in Section 1, the goal of ABMS
is to search for explanatory insight into the collective
behaviour of agents. Unlike the MAS with clear overall
objectives, a CAS is more decentralised so that none of
the agents is able to control the whole system. For ex-
ample, in an open market where multiple autonomous
firms are competing for customers’ orders, none of
them – firms and customers – can play a decisive role
in the competition evolution.

In sum, the agents in a MAS can be well controlled
as the model is created to solve problems; while an
ABM is designed to understand the behaviour of a
complex system, and thus the modeller should not at-
tempt to fully control the agents in a CAS. However,
the stakeholder of agent-based OR/MS research could
be interested in how to configure, regulate and guide the
ABMwithout destroying an agent’s autonomy. Is there
an approach to extending an ABM for solving specific
problems optimally? The answer could be simulation-
based optimisation.
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Table 6. Simulation results of Model B with different functions of the switching probability ρ.

Switching Scenario B1 Scenario B2 Scenario B3
probability Indicator (3 parameters) (4 parameters) (1 parameter)

ρ1 Price 4.981 (2.888) 4.981 (2.888) 4.981 (2.888)
Profit 166.259 (276.728) 166.259 (276.728) 166.259 (276.728)

ρ2 Price 1.960(1.778) 1.761 (0.736) 1.215 (0.015)
Profit 21.113 (34.490) 167.833 (50.872) 135.039 (11.354)

ρ3 Price 3.401 (2.064) 1.878 (1.518) 1.140 (0.004)
Profit 102.203 (175.967) 155.944 (57.951) 126.677 (0.304)

ρ4 Price 2.800 (2.131) 2.053 (1.834) 1.128 (0.003)
Profit 79.024 (166.596) 171.868 (94.902) 125.37 (0.174)

Note: Each data cell contains the mean and STD (placed in parentheses) of agents’ average price or profit.

For example, in a regulated competitive market with
private investment (e.g., a waste treatment market),
the policy-makers have to respect the rights of private
companies to pursue a reasonable profit. On the other
hand, the regulated market is expected to fulfill some
targets predefined by the public sector. In other words,
after creating an ABM of the market and evaluating the
impact of changing one XV (i.e., a simple policy), the
regulator seeks to optimally adjust multiple XVs (i.e., a
mixed policy) and thus achieves an objective with some
constraints.

In this case, the ABM can be viewed as a black
stochastic box. Given the same model, simulation re-
sults vary across randomseeds, and cannot be expressed
using equations. However, the relationship between
XVs and simulation results truly exists. Therefore, we
can employ simulation-based optimisation methods to
search for the optimal XVs which can meet all given
requirements. In particular, the XVs are decision vari-
ables that can be changed by the regulator directly
or indirectly; while the predefined requirements are
treated as the objective and constraints. Many heuristic
search algorithms (e.g., genetic algorithms) can be used
to address the problem, although they have to be per-
formed many times for the sake of solution robustness.

To conclude, the modeller should respect the auton-
omy of agents in a CAS. Under certain circumstances
that all agents can be guided by a powerful party (e.g.,
the government in a regulated market, or the core firm
in a supply chain), the modeller is suggested to inte-
grate the ABM into a simulation-based optimisation
problem, so that optimal configuration of the ABM can
be found using heuristic search algorithms.

7.3. The impact of different
exploration-exploitation balancingmechanisms

Weare interested in the impact of differentmechanisms
which are used to balance exploration and exploitation.
Four different functions of the switching probability
ρ(t) (denoted by ρ1 to ρ4) are considered, as shown in
Figure 4. In time step t, if a random number ∈ [0, 1]
is smaller than ρ(t), the agent will make a random
decision. The maximum time step is still 100 because
we use Model B as the test-bed. Therefore, ρ2 is the

benchmark function which has already been applied in
previous experiments. Compared with ρ2, function ρ3
implies that the agent will be less likely tomake random
decisions because it drops exponentially. The extreme
cases are ρ1 and ρ4, in which the agent only performs
exploration or exploitation. Note that the agent with ρ4
has to make several random decisions at the beginning
of simulation due to the need of solving regression
problems. In particular, the agent has to record 3/4/1
random attempts according to the number of parame-
ters to be estimated under Scenario B1/B2/B3, respec-
tively. To conclude, the agent becomes less exploratory
as the function changes from ρ1 to ρ4.

Table 6 reports the simulation results, from which
the following findings can be observed: (1) When the
agent only performs exploration, the simulation results
are identical (as the random seeds are fixed) and thus
meaningless. This finding implies that it is important
to consider exploitation in designing agent decision-
making process. (2) Under Scenario B2, the STDs of
agents’ average price and profit increase as the func-
tion changes from ρ2 to ρ4, indicating that agents get
trapped in distant local optima. (3) In contrast, agents
under Scenario B3 have deceasing STDs as agents be-
come less exploratory. With ρ4, their average price
and profit are very close to the Nash equilibrium, i.e.,
1.125(0.000) and 125(0.000). The reason is probably the
number of parameters to be estimated. If the agent’s
OR model has many unknown parameters, it is chal-
lenging to search for the global optimum. Hence, the
exploration-exploitation balancing mechanism should
allow the agent to explore more in simulation. When
the agent has fewparameters to be estimated, the switch-
ing probabilityρ should be small to help the agent refine
its decisions.

8. Conclusion

Following many sociologists and economists, an in-
creasing number of OR/MS scientists have noticed the
importance of understanding how humans and organ-
isations behave in different situations, which is diffi-
cult to be captured in traditional mathematical meth-
ods.Moreover, we suggest that some applicableOR/MS
problems have four specific requirements in terms of
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agent architecture: orienting to bounded rational enti-
ties, handling discrete/continuous-variable issues, con-
sidering information availability, and incorporating
OR/MS models. However, existing agent architectures
in the areas of the ABSS and ACE barely meet these
requirements.

This paper presents an estimation-and-optimisation
(ESTOPT) architecture tomodel agent decision-making
process in the context of OR/MS. The two-stage
ESTOPT treats an agent’s behaviour as a process of
solving its OR problem, some parameters of which are
uncertain and need to be estimated. In the first stage,
the ESTOPT agent collects and records information for
estimation; in the next stage, it attempts to solve the
OR problem. A probabilistic mechanism is embedded
in the ESTOPT to balance exploration and exploita-
tion. The solution guides the agent’s actions on the
environment which in turn, provides the agent with
new information and payoff as feedback. We introduce
two ABMs to demonstrate the implementation of the
ESTOPT approach, and conduct thousands of experi-
ments under different scenarios with these two ABMs.
The computational results suggest that the ESTOPT
approach can be used to simulate an agent’s decision-
making process in black-box managerial environment.

As one of the first attempts to discuss agent-based
OR/MS research paradigm, we do not claim that the
ESTOPT should be viewed as the best solution to mod-
elling agent’s behaviours in all OR/MS studies. Indeed,
there is a consensus among ABMS scholars that the
choice of modelling approaches highly depends on the
context, the goal of the simulation, and the various
parameters (Edmonds & Moss, 2005; Epstein, 2006).
Hence, although we believe that the ESTOPT can be
perfectly adapted in some applicable OR/MS problems,
the simulation could greatly benefit from
employing other modelling approaches (e.g., the
belief-desire-intention architecture) in other cases (e.g.,
if emotions and norms of customers need to be consid-
ered inmarketing research). To conclude, the proposed
ESTOPT is expected to be improved, extended, cus-
tomised, integrated, and applied by interested readers.
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