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a b s t r a c t

The planar maximal covering location problem (PMCLP) concerns the placement of a given number of facili-

ties anywhere on a plane to maximize coverage. Solving PMCLP requires identifying a candidate locations set

(CLS) on the plane before reducing it to the relatively simple maximal covering location problem (MCLP). The

techniques for identifying the CLS have been mostly dominated by the well-known circle intersect points set

(CIPS) method. In this paper we first review PMCLP, and then discuss the advantages and weaknesses of the

CIPS approach. We then present a mean-shift based algorithm for treating large-scale PMCLPs, i.e., MSMC. We

test the performance of MSMC against the CIPS approach on randomly generated data sets that vary in size

and distribution pattern. The experimental results illustrate MSMC’s outstanding performance in tackling

large-scale PMCLPs.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.
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. Introduction

Covering problems in facility location have received considerable

esearch interest due to its applicability in the real world (Farahani,

sgari, Heidari, Hosseininia, & Goh, 2012). Each facility is able to

rovide services within a given critical distance, i.e., the coverage

adius. A customer is considered served from a facility if the dis-

ance between them is less than or equal to the facility’s coverage

adius. In reality, however, budget limits often constrain the num-

er of service facilities to be located. This gives rise to the maxi-

al covering location problem (MCLP) (Church & Velle, 1974), which

eeks to maximize the coverage of customer demands by siting a

iven number of new facilities. In the last 40 years, MCLP and its

xtensions have been widely applied to study various location is-

ues such as planning emergency facilities (e.g., Schilling, Revelle,

ohon, & Elzinga, 1980; Eaton, Daskin, Simmons, Bulloch, & Jansma,

985; Murray & Tong, 2007), siting telecommunications equipment

e.g., Akella, Delmelle, Batta, Rogerson, & Blatt, 2010; Oztekin, Pajouh,

elen, & Swim, 2010; Shillington & Tong, 2011), location for business
∗ Corresponding author. Tel./fax: +86 21 6293 3095.
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e.g., Jones & Simmons, 1993; Pastor, 1994), and public services (e.g.,

ougland & Stephens, 1976; Otto & Boysen, 2014).

Most MCLP models have been built under the assumption that

he candidate locations of the new facilities are known in advance.

n other words, facilities can only be installed in discrete nodes.

ome researchers (e.g., Mehrez, 1983; Mehrez & Stulman, 1982, 1984;

hurch, 1984) have relaxed this constraint and extended the discrete

ersion of MCLP to consider facility location in a continuous space,

.e., facilities are allowed to be placed anywhere on a plane. This prob-

em is known as the planar maximal covering location problem (PM-

LP), originally defined in Church (1984). For PMCLP, it is possible

o attain a greater demand coverage because many more desired lo-

ations are available for selection when making strategic facility lo-

ation decisions such as infrastructure investment (Murray & Tong,

007; Wei, 2008). Murray and Tong (2007) suggested that more gen-

ral representations (points, lines or polygons) of demand can also

e optimally served in a region. They introduced the extended pla-

ar maximal covering location problem-Euclidean (EPMCE) and ap-

lied it to emergency warning sirens siting in Dublin. Matisziw and

urray (2009) formulated the 1-facility continuous maximal cover-

ng problem (CMCP-1), where demand is considered as continuously

istributed within a whole region (convex or non-convex). They ad-

ressed CMCP-1 by generating the medial axis, which can be viewed

s a geometrical representation of the region. Later in Wei (2008), the
EURO) within the International Federation of Operational Research Societies (IFORS).
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multi-facility case of CMCP was solved based on Voronoi diagrams

and the geometric properties of the region. Recently, several applica-

tions of PMCLP have been reported by geographical researchers (see

for example Liu & Hodgson, 2013; Wei, Murray, & Batta, 2014; Wei &

Murray, 2014b).

To solve PMCLP, it is natural to reduce it to MCLP by finding a finite

number of potential sites on the plane. With this set of discrete sites,

MCLP can be solved by either exact or heuristic approaches. In other

words, PMCLP can be addressed in two phases: I – identify a candi-

date locations set (CLS) and II – use exact or non-exact methods to

address the degraded PMCLP for coverage maximization. Therefore,

it is critical to identify a good CLS for solving PMCLP. We can analyze

a CLS from various angles: (1) Coverage. The objective of the MCLP is

to find a solution with maximal coverage. Hence, the coverage of the

candidates in a CLS is an important consideration. (2) Size of the CLS.

MCLP is NP-hard (Downs & Camm, 1996), whose size is determined

by the numbers of demand nodes, potential locations, and facilities to

be located. For a very large-scale MCLP, we have to apply heuristic al-

gorithms to search for the optimal solution. However, using such non-

exact methods may cause a loss of coverage (obtaining a local optimal

solution only), or even fail to produce a feasible solution. Therefore,

given a large number of demand points, it is highly desirable to re-

duce the number of potential sites in Phase I before solving MCLP. In

addition to the above two essential principles, decision-makers in re-

ality may also be concerned with the following objectives. (3) Time

to generate the CLS. Is there an efficient way to generate the CLS in

Phase I? This research question has largely been neglected in the lit-

erature, yet it is a significant issue to address in real life. For exam-

ple, when a severe disaster (e.g., a storm, an earthquake etc.) takes

place, it is an urgent task for the government to decide where to site

search and rescue (SAR) stations in order to provide medical and re-

habilitation services for as many victims as possible in a large area.

The scale of such a problem can be remarkably large as the num-

bers of SAR stations and victims may be numerous. In the context

of such emergency situations, the decision-maker must consider not

only the above features of the candidate locations, but also the effi-

ciency of solving such large-scale PMCLPs in real time. (4) Average

distance to demand. Given that serving faraway demands will incur

a high cost, planners may also be concerned about the distances be-

tween the covered demand points to the closest facility.

A three-step procedure, often referred to as the circle intersect

points set (CIPS) method in the literature, has been the dominat-

ing technique for creating the CLS since it was introduced by Church

(1984). First, this method produces a demand and intersection points

set (DIPS1) by exploiting the geometric properties of coverage. The

circles are centered to cover demand locations with predefined cov-

erage radii under the Euclidean distance measure. The second step

in Phase I, which is optional if the DIPS only has few members, is

to remove all the dominated points from the DIPS in order to re-

duce the size of the CLS. It has been shown that the reduced DIPS,

i.e., the final CLS, contains at least one optimal solution to the PM-

CLP (Church, 1984). Given this CLS, the last step is to solve MCLP in

Phase II. The CIPS method greatly facilitates coverage maximization

and contributes significantly to size reduction. Consequently, it has

been widely applied and extended in many studies (e.g., Younies &

Wesolowsky, 2004; Murray & Tong, 2007; Canbolat & Massow, 2009;

Yildiz, Akkaya, Sisikoglu, & Sir, 2011) as a standard approach to ad-

dress PMCLP. However, the CIPS method has high time complexity

and is generally unable to handle large-scale PMCLPs (see Section 2.2

for the details).
1 Note that this set was also called CIPS in Church (1984) and thus the term CIPS had

two meanings: the whole method and the points set. To avoid confusion, hereafter in

this paper we use the term CIPS to denote the method, and DIPS to call the demand

and intersection points set generated by the CIPS method at the first step. We thank an

anonymous referee for this helpful suggestion.

Θ

In this study we propose a mean-shift based algorithm for treat-

ng large-scale PMCLPs, i.e., MSMC. In MSMC, we introduce a re-

ised mean-shift procedure that is less time consuming, and hence

ore suitable for solving large PMCLPs, than the traditional CIPS

ethod. The mean-shift procedure has been successfully adapted to

arious application domains, such as cluster analysis in computer vi-

ion and image processing (Comaniciu & Meer, 2002). To the best of

ur knowledge, this work is the first attempt to solve location prob-

ems using the mean-shift procedure. The advantages for choosing

he mean-shift procedure to identify the CLS for PMCLP are discussed

n detail in Section 3.2.

The remainder of the paper is organized as follows: in Section 2

e review PMCLP, and discuss the pros and cons of the traditional

IPS approach. In Section 3 we briefly introduce the mean-shift pro-

edure and the core of the proposed MSMC algorithm. We present

ach step of MSMC in detail. In Section 4 we compare the perfor-

ance of MSMC against the CIPS method on randomly generated data

ets that vary in size and distribution pattern, and discuss the experi-

ental results to reveal the various performance aspects of the MSMC

nd CIPS approaches. In Section 5 we conclude the paper, discuss the

esearch limitations, and suggest topics for future research.

. Problem formulation and the CIPS method

PMCLP seeks to maximize the demand coverage on a plane. Unlike

CLP which locates facilities on a network or discrete locations, PM-

LP concerns the siting of a given number of facilities anywhere on a

lane; in other words, the number of potential sites for location is in-

nite in PMCLP. To address this issue, there is a need to generate a set

f discrete potential locations from the continuous space, essentially

educing PMCLP to MCLP. To recap, solving PMCLP can be executed in

wo phases, namely I – identify a CLS and II – solve the MCLP given

he CLS.

In this section we first present the MCLP formulation, from which

MCLP naturally arises. We then detail Phase I of the CIPS approach

o solve PMCLP proposed by Church (1984). Finally, we discuss the

dvantages and shortcomings of the CIPS method.

.1. The maximal covering location problem

MCLP has been mathematically formulated by Church and Velle

1974) as follows:

aximize Z =
∑
i∈I

wiYi. (1)

ubject to∑
j∈Θi

Xj ≥ Yi, for all i ∈ I (2)

j

Xj = p, (3)

j = {0, 1}, for all j ∈ J (4)

i = {0, 1}, for all i ∈ I (5)

here

i = index of demand points (entire set I);
j = index of facility locations (entire set J);

wi = weight of demand node i;
i = { j ∈ J | di j ≤ R};

di j = the shortest distance from i to j;
R = predefined coverage radius of facility;

p = number of facilities to be located;
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Xj =
{

1, if a facility is located at j,
0, otherwise.

Yi =
{

1, if demand i is covered by any sited facility,
0, otherwise.

The objective function (1) maximizes the total weighted demand

erved by the facilities. Constraint (2) allows Yi to equal 1 only when

emand point i is served by at least one facility. The number of facili-

ies to be sited is restricted to equal p in constraint (3). Constraints

4) and (5) impose the binary integer restriction on the decision

ariables.

Given a CLS with size f = |CLS|, the number of possibilities of fa-

ility location is ( f
p) = f !/(p!( f − p)!). OR-based methods like mixed

nteger programming can be applied to find the best solution for

mall-sized MCLPs. However, when the size of the CLS is sufficiently

arge, exploring the huge solution space is quite time consuming and

ay be prohibitive, so heuristic algorithms are required to search for

cceptable solutions within a reasonable time. There are both exact

nd non-exact approaches for various types of MCLPs in the litera-

ure. However, given that MCLP is NP-hard, it is desirable to find ways

o reduce the size of the CLS in Phase I as a smaller f can save consid-

rable computing time in Phase II.

.2. The CIPS method

According to Church (1984), the CIPS approach can be itemized as

ollows2:

1. Generating DIPS. Draw the covering boundary for each demand

point (DP) and identify the intersection points (IPs) of the bound-

aries, and combine the DPs and the IPs as the DIPS.

2. Refining DIPS (optional for small-sized DIPS). Drop all the domi-

nated points from the DIPS as final CLS.

3. Solving MCLP given the CLS.

Suppose that there are n demand points to be covered on the

lane. Our interest is to generate a CLS in an efficient way to help

ddress a large-scale PMCLP. Fig. 1 gives a simple example to show

he basic process of CLS generation using the CIPS method. There are

our DPs placed on the plane according to their coordinates and the

overage radius R = 1 in this instance. In Step 1, four circles centered

t the blue DPs are drawn as shown in Fig. 1(a). As a result, five red

Ps are recognized and their coverage boundaries are also plotted in

ig. 1(b). The next step is to recognize the dominating points from

he nine nodes. According to Church (1984), point A is considered to

ominate point B if point A covers the same, or more than, all the de-

and points that point B can serve. According to this rule, all the four

Ps are considered to be dominated by the four corner IPs since a fa-

ility located at any one of the DPs can only serve one DP, i.e., itself,

hile each corner IP covers two DPs. At the end, however, the only

ember of the DIPS, or the CLS, is IP5 located at the origin because it

as all the four DPs covered, dominating the other IPs.

Admittedly, the CIPS is excellent in creating a CLS in terms of cov-

rage maximization since the generated DIPS is guaranteed to contain

t least one optimal solution to the PMCLP (Church, 1984). However,

nding the dominating points can be time consuming, especially for

arge-sized PMCLPs. The total amount of time required to refine the

IPS depends on not only the number of DPs, but also the pattern of

he demand distribution. Given n demand points on the plane, the

IPS may have at least n members when the DPs are too far away

rom one another, so no IP can be created. In this case, it is optional to

ecognize the dominating points. In the worst case where all the DPs
2 Appendix A provides the pseudo codes of the key procedures discussed in this

aper, including both the CIPS and MSMC approaches. Comprehensive discussion of

he time complexity of each procedure is also given.

w

g

ather inside a circle of radius (2 ∗ R), the DIPS has 2 ∗ (n
2) + n = n2

embers, making it necessary to remove the dominated candidate

ocations from the DIPS. In other words, the size of the DIPS is c ∈
n, n2]. Before incorporating the reduction technique in Step 2, we

now that the final size f of the CLS will be less than or equal to c.

owever, it is difficult to predict the precise f since we need to com-

ute regardless of whether these c sets containing the covered DPs

re subsets of one another. In the worst case, the complexity will tend

owards O((c
2) ∗ n) = O(n5), as detailed in Appendix A. Therefore, the

IPS method may fail to produce the CLS for a large-sized PMCLP with

oint-based demands in a reasonable time, as suggested by Murray

nd Tong (2007) and Wei (2008).

Motivated by the above observations, we set out to propose an

lgorithm that is more efficient in creating the CLS for solving a large-

cale PMCLP.

. The mean-shift algorithm

The mean-shift algorithm is an iterative mode-seeking method in-

roduced by Fukunaga and Hostetler (1975). It presents a simple but

fficient way to converge to the local density maxima (LDM) in any

robability distribution. During the last decade, the mean-shift algo-

ithm has been extensively studied and successfully applied to many

pplications in the computer vision domain, such as real-time ob-

ect tracking (Comaniciu, Ramesh, & Meer, 2000), image segmenta-

ion (Tao, Jin, & Zhang, 2007), cluster analysis (Wu & Yang, 2007) etc.

In this section we present a brief review of the original mean-shift

rocedure. We then propose a new algorithm MSMC based on a re-

ised mean-shift procedure to generate the CLS for solving PMCLPs.

.1. A brief introduction to the meanshift algorithm

Suppose that there are n data points {yi}n
i=1

in a d-dimensional Eu-

lidean space Rd. The mean-shift algorithm assumes that they are in-

ependent, identically distributed samples drawn from a population

ith an unknown density function f(y). The multivariate kernel den-

ity estimator obtained with kernel K(y) and bandwidth h is defined

s Silverman (1986):

f̂ (y) = 1

nhd

n∑
i=1

K(
y − yi

h
), (6)

here the kernel K(y) is a scalar function under the conditions given

n Fukunaga and Hostetler (1975). Among the various valid kernels,

he radially symmetric kernel is often selected since it is more suited

or the mean-shift algorithm (Comaniciu & Meer, 2002), satisfying:

(y) = ck,dk(‖y‖2), (7)

here ck,d is a positive normalization constant that makes K(y) inte-

rate to one. The function k(x), only for x ≥ 0, is called the profile of

he kernel (Comaniciu & Meer, 2002).

In order to locate the modes of the density function, the gradient

f the density estimator is formulated by exploiting the linearity of

q. (6) as follows:

ˆ fh,K(y) ≡ ∇ f̂h,K(y)

= 2ck,d

nhd+2

n∑
i=1

(yi − y)g

(∥∥∥y − yi

h

∥∥∥2
)

= 2ck,d

nhd+2

[
n∑

i=1

g

(∥∥∥y − yi

h

∥∥∥2
)]

mh(y), (8)

here

(x) = −k′(x), (9)
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Fig. 1. The CLS generation process given in Church (1984). Blue nodes represent demand points (DPs) and red nodes are intersection points (IPs) where circles intersect. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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t

tional CIPS method.

3 We thank an anonymous referee for this helpful suggestion.
mh(y) =

∑n
i=1 yig

(∥∥∥y − yi

h

∥∥∥2
)

∑n
i=1 g

(∥∥∥y − yi

h

∥∥∥2
) − y. (10)

The first term of the product in (8) is proportional to the density

estimate at y computed with the kernel G(y):

G(y) = cg,dg(‖y‖2). (11)

Eq. (10), i.e., the second term in Eq. (8), is the mean shift, which

denotes the vector from the centre of the kernel y to the weighted

mean computed with the kernel G. In other words, it always points

towards the direction of maximum increase in density (Comaniciu &

Meer, 2002). In the event that mh(y) = 0, the mean-shift algorithm

converges to the LDM where the density estimator f̂h,K(y) has a zero

gradient. Hence, given the bandwidth h, also known as the window

size, and the initial starting points (SPs), the mean-shift procedure

comprises the following steps:

1. fix a kernel (window) around each SP;

2. compute the mean-shift vector mh(yt) within the kernel

(window);

3. shift the kernel (window) to the mean: yt+1 = yt + mh(yt);

4. go to Step 2 until convergence.

The above procedure has been shown to converge at the LDM

where the multivariate kernel density estimator has zero gradient (see

Comaniciu & Meer, 2002; Li, Hu, & Wu, 2007). Therefore, the mean-

shift algorithm is actually a gradient ascent method which has good

potential to search for LDM.

Fig. 2 is a demonstration of applying the mean-shift algorithm on

the planar where the kernel g(y) = 1. As a result, the mean-shift vec-

tor mh,G(y) = 1

n

∑n
i=1 (yi − y), which means all the data points have

identical weights. In Fig. 2(a), a window (circle) is centered at one

data point and the mean-shift vector can be calculated after searching

for the covered data points. Next, the centre of the disk keeps mov-

ing to the new mean location along the shift vector until reaching a

LDM, as shown in Fig. 2(b), (c), and (d). These shift vectors compose

a path leading to the stationary point, which is a desirable feature of

our MSMC algorithm as we will see later in this section.
.2. Why generate the CLS using the mean-shift algorithm?

As this work is the first attempt to solve location problems using

he mean-shift procedure, there is a need to explain the rationale for

t.3 We summarize the reasons for choosing the mean-shift procedure

o identify the CLS for PMCLP are as follows.

• The PMCLP model meets all the requirements of the mean-shift

method. A plane is a two-dimensional space and the demand

points on it can be viewed as samples from an unknown distri-

bution. Furthermore, the mean-shift algorithm requires no prior

knowledge of the distribution because the mean-shift vector al-

ways points in the direction of maximum increase in the density.

Therefore, it can be directly applied to identify the CLS for PMCLP.
• The aim of the mean-shift procedure is consistent with the first

criterion of the CLS: coverage. Given a coverage region, a candi-

date location should cover as many demand points as possible.

The identified LDM could be such ideal potential sites since they

are located at the centres of the densest regions and should thus,

cover the majority of demand points.
• The number of LDM could be relatively small, which is the second

principle of a CLS. Comaniciu and Meer (2002) defined the term

basin of attraction of a mode as the set of all the locations that

get sufficiently close to the mode and will definitely converge to

it eventually. Fig. 2 is an example to illustrate how the starting

point in Fig. 2(a) is captured and shifted from the initial location to

the mode in Fig. 2(d). This feature allows modes to attract nearby

mean locations, so reducing the size of the set of unique stationary

points significantly.
• The mean-shift procedure consumes less time to yield the CLS,

which is another theoretical advantage. It requires multiple near-

est neighbor searches during the execution of Step 2, so its time

complexity is O(τ ∗ s ∗ n), where s and n are the numbers of start-

ing points and data points, respectively, and τ stands for the num-

ber of iterations before convergence. For the original mean-shift

procedure that choose the data points as initial starting points, it

takes O(τ ∗ n2) time. Admittedly, this algorithm is not highly scal-

able; however, it is still much more efficient than the CIPS method,

which runs in O(n5) time in the worst case. Therefore, one would

expect that the larger the n is, the faster is MSMC than the tradi-
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(a) (b) (c) (d)

Fig. 2. The mean-shift procedure. The green arrow is the mean-shift vector computed with the red points within the window. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article).
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• A LDM is the mean, i.e., the centre of covered demand locations.

Therefore, the distances to these served nodes are minimized,

which has a practical advantage over the CIPS method in terms

of distance reduction, even though distance reduction is not an

objective in the original PMCLP formulation. This is because siting

facilities at intersection points produced by the CIPS method may

not be optimal in practice if the distance factor is taken into ac-

count, as noted by Wei and Murray (2014a). For example, in Fig. 3,

the four DPs are closer to one another than twice of the given ra-

dius. Therefore, 12 red IPs can be found in Fig. 3(a). After removing

the dominated nodes, there are eight candidate locations left and

each one is able to cover all the DPs. In other words, any one of

them, i.e., four red IPs and the original DPs themselves as illus-

trated in Fig. 3(b), can be chosen as the only member of the CLS.

If one of the blue DPs, e.g., DP3 is selected, there is an overlap be-

tween the locations of the demand nodes and facility locations;

if one of the red IPs, e.g., IP1 is chosen, it is certain that two DPs

will lie on their coverage boundaries. In real-world applications,

such as distribution of medical supplies, the decision-maker may

still prefer locating a facility on the origin of the plane since it

is generally considered that a facility close to the demand points

can provide a better quality of coverage (Dessouky, Ordez, Jia, &

Shen, 2006; Jia, Ordez, & Dessouky, 2007). However, this kind of

optimal locations in practice cannot be produced using the CIPS

method.

In view of the above discussion, we consider that the mean-shift

lgorithm is a promising technique for identifying a good CLS for solv-

ng PMCLP.
ig. 3. CLS generation process given in Church (1984). Blue nodes represent demand points

f the references to color in this figure legend, the reader is referred to the web version of thi
.3. The MSMC method

Similarly, our MSMC comprises the following three steps:

1. Generating DIPS.

2. Run the revised mean-shift procedure to identify LDM as final CLS.

3. Solving MCLP given the CLS.

The original mean-shift procedure was not designed for the PM-

LP. Therefore, we need to configure and revise it in order to improve

ts performance.

The original mean-shift approach has three main parameters:

tarting points (SPs), the bandwidth h and the kernel function g(y).

he mean-shift procedure usually launches from the data points

hemselves. As mentioned in previous subsection, demand points

DPs) in the PMCLP are the data points for the mean-shift procedure,

hus SPs = DPs. However, we suggest that both DPs and IPs should be

sed as the SPs to identify the CLS, i.e., SPs = DPs + IPs = DIPS. The rea-

on for this modification is that starting only with the DPs makes the

ean-shift procedure fail to discover the critical candidate locations

uch as the IPs. For example, in Fig. 1(a), if we simply choose the DPs

s the initial SPs, then the algorithm will stop immediately and offer

our DPs as the LDM. As shown in Fig. 4, MSMC starting with the DIPS

s able to recognize five more LDM, including the origin. However, the

ide effect of this adaptation is that it increases the time complexity.

lthough determining the DIPS is a computationally affordable op-

ration with a time complexity of O(n2), the size of the DIPS raises

he time complexity of the mean-shift procedure from O(τ ∗ n2) to

(τ ∗ n3) in the worst case. However, on weighing the performance

radeoff, we suggest that the DIPS, rather than the DPs, be used as the
(DP), red nodes are intersection points (IP) where circles intersect. (For interpretation

s article).
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Fig. 4. Nine stationary modes, marked as purple signs, are computed when the DIPS

is selected as the initial starting points for the MSMC algorithm. (For interpretation of

the references to color in this figure legend, the reader is referred to the web version

of this article).

Fig. 5. Re-organized time-lines of the CIPS and MSMC approaches applied in the

experiments.

Table 1

Four types of data set generated.

Name Equal weight? # of facilities (p) Coverage radius (R)

Random No 4 0.50

Circles Yes 3 0.61

Moons No 3 0.62

Blobs Yes 2 0.73
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4 The Python API of CPLEX is part of IBM’s ILOG CPLEX optimization studio (Version:

12.5).
initial starting points for MSMC, with a view to achieving maximal

coverage.

Bandwidth selection is an important topic in the research commu-

nity since it directly affects the performance of density estimation,

especially for the tracking of size-changing objects. Many approaches

have been developed to address this issue and the bandwidth of the

mean-shift procedure can be automatically selected in various prac-

tical applications (see for example Comaniciu, Ramesh, & Meer, 2001;

Ming, Ci, Cai, Li, Qiao, & Du, 2012). In the context of PMCLP, it is nat-

ural to set the facility’s covering distance as the bandwidth in MSMC,

i.e., h = R.

The kernel function in the mean-shift process essentially imposes

additional weights on the data points according to their distances to

the shifting mean (Comaniciu & Meer, 2002). Cheng (1995) summa-

rized four types of kernel functions frequently used in mean-shift re-

search, namely flat, Gaussian, Epanechnikov, and quartic kernel. The

experimental results presented in Appendix B demonstrate that the

flat kernel performs best in terms of coverage. Therefore, we suggest

that a flat kernel be chosen where all the data points are assumed to

have the same distance weight when identifying LDM, i.e., g(y) = 1 as

in Fig. 2. Moreover, if the demand points are associated with different

weights wi in the PMCLP model, they should be taken into considera-

tion when solving MCLP in Phase II, rather than in Phase I. The reason

for forcing weights to be equal in computing the means and shift vec-

tors is that we are able to recognize some saddle-like LDM without

considering the weights. For instance, the origin found in Fig. 4 can

be viewed as a saddle point. Suppose that one of data points, say, DP1

has a larger weight, it will pull the centered LDM to the right. In that

case, we will lose this candidate location on the origin.

The sharp-eyed readers may find in Fig. 4 that the origin dom-

inates the other LDM, raising the question about the necessity of

removing the dominated LDM using the same reduction technique

employed by the second step of the CIPS method. The main motiva-

tion to add this step after identifying the LDM is that dropping the

dominated LDM will reduce the size of the CLS, consequently sav-

ing time for solving MCLP. However, this operation is actually quite
omputationally demanding, as analyzed in Appendix A. In other

ords, using the reduction procedure requires much more time than

hat it saves because running the solver for MCLP is usually not the

ottleneck of the algorithm’s whole performance, as we will see later

n the experimental results.

In conclusion, the MSMC algorithm incorporates and modifies the

riginal mean-shift procedure in order to generate CLS more effi-

iently for large-sized PMCLPs. Furthermore, it also borrows helpful

deas from the traditional CIPS method, such as creating the DIPS as

he SPs for MSMC.

In the next section we generate a host of data sets to test the per-

ormance of the MSMC algorithm against the CIPS method.

. Computational experiments

.1. Implementation and experimental design

For comparison purposes, we re-organize the steps of the two

lgorithms as two time-lines illustrated in Fig. 5. We coded all the

tages in Python 2.7, combining with the CPLEX® API4 for solving

CLP in Stage 3. We conducted all the experiments on an Intel Xeon

omputer with two processors (2.30 gigahertz) running 64-bit Win-

ows 7 with 32 gigabyte of RAM.

At the beginning, we generated four types of test data set using

he scikit-learn module, which is a well-known Python package for

ata mining and data analysis. Although we added the standard de-

iation of the Gaussian noise to the data, the generated data sets

ere repeated exactly for the two algorithms since the random seed

as fixed. We also standardized all the data sets by removing the

ean and scaling to unit variance in order to specify their x and

coordinates over the range of (−2, 2). Most of their parameters

re listed in Table 1, whose values are chosen arbitrarily. Random

eights between 0 and 10 were assigned to the data points of the

wo data sets, namely Circles and Blobs. Therefore, the only parame-

ter we needed to control was the number of data points, which was

assigned as n = {20, 60, 100, 200, 300, 400, 500}. Additional large-

cale instances where n = {1000, 2000, 3000} are created to test the

SMC method only, since the CIPS is unable to solve them in a rea-

onable time. In other words, we generated 28 data sets to evaluate

nd compare the performance of two algorithms, and 12 larger-scale

nstances to assess the performance of MSMC in solving large-sized

MCLPs. Note that as n grows, a dramatically increasing number (up

o n(n − 1)) of the IPs will be produced in the cramped region with a

igher density, causing stress-growing tests for both algorithms.
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Table 2

Experimental results for the data sets Random and Circles (n ≤ 500).

Index Random Circles

20 60 100 200 300 400 500 20 60 100 200 300 400 500

z1 0.85 0.6 0.53 0.44 0.41 0.42 0.41 0.6 0.45 0.43 0.41 0.39 0.4 0.38

z2 0.85 0.46 0.51 0.4 0.39 0.4 0.37 0.45 0.42 0.38 0.38 0.37 0.37 0.37

wd1 0.32 0.39 0.35 0.34 0.34 0.35 0.36 0.53 0.52 0.47 0.46 0.41 0.42 0.38

wd2 0.26 0.33 0.32 0.31 0.34 0.34 0.34 0.46 0.43 0.35 0.36 0.33 0.35 0.35

c 88 734 2054 8308 18450 32854 51056 124 1000 2800 11244 25108 44780 69998

f1 10 63 159 539 1243 2055 2953 24 89 191 599 1323 2234 3367

f2 20 78 105 262 453 505 415 44 113 142 214 275 330 349

t1
1 0.002 0.017 0.048 0.205 0.432 0.732 1.109 0.004 0.017 0.059 0.227 0.516 0.841 1.279

t1
2 0.002 0.014 0.049 0.194 0.433 0.702 1.03 0.002 0.017 0.048 0.224 0.484 0.806 1.23

t2
1 0.007 0.415 3.018 48.246 261.194 895.843 2140.779 0.023 0.709 5.313 86.159 456.7 1510.373 3799.186

t2
2 0.019 0.199 0.755 3.654 9.841 20.27 36.8 0.024 0.272 0.958 4.713 13.199 23.456 38.459

t3
1 0.019 0.024 0.059 0.157 0.67 1.749 4.235 0.018 0.027 0.048 0.228 0.926 2.542 6.566

t3
2 0.018 0.031 0.039 0.075 0.178 0.25 0.24 0.019 0.03 0.035 0.078 0.138 0.176 0.227

T1 0.028 0.456 3.125 48.608 262.296 898.324 2146.123 0.045 0.753 5.42 86.614 458.142 1513.756 3807.031

T2 0.039 0.244 0.843 3.923 10.452 21.222 38.07 0.045 0.319 1.041 5.015 13.821 24.438 39.916

Table 3

Experimental results for the data sets Moons and Blobs (n ≤ 500).

Index Moons Blobs

20 60 100 200 300 400 500 20 60 100 200 300 400 500

z1 0.71 0.61 0.57 0.55 0.52 0.52 0.51 0.9 0.92 0.93 0.93 0.94 0.93 0.93

z2 0.64 0.5 0.5 0.5 0.47 0.49 0.47 0.8 0.9 0.9 0.87 0.88 0.92 0.91

wd1 0.55 0.54 0.5 0.49 0.49 0.43 0.43 0.45 0.44 0.44 0.43 0.43 0.43 0.44

wd2 0.42 0.31 0.35 0.37 0.34 0.35 0.34 0.32 0.42 0.41 0.41 0.41 0.41 0.41

c 126 1126 3138 12572 28288 49646 77644 224 1942 5470 21754 49136 87532 137012

f1 17 83 164 541 1195 1888 2862 5 8 15 45 79 129 176

f2 48 49 67 69 61 69 52 5 10 7 4 4 6 11

t1
1 0.002 0.019 0.069 0.25 0.529 0.894 1.364 0.003 0.025 0.096 0.348 0.733 1.252 1.939

t1
2 0.004 0.018 0.069 0.259 0.517 0.91 1.306 0.003 0.036 0.101 0.34 0.722 1.223 1.912

t2
1 0.016 0.802 5.844 96.989 509.774 1579.29 4016.619 0.032 1.796 13.306 208.691 1046.624 3289.905 8098.226

t2
2 0.037 0.335 1.19 6.883 17.599 43.066 83.956 0.054 0.65 2.086 8.92 22.782 44.219 71.562

t3
1 0.017 0.027 0.064 0.213 0.83 2.254 5.985 0.019 0.025 0.029 0.06 0.106 0.21 0.333

t3
2 0.025 0.023 0.04 0.061 0.073 0.097 0.097 0.016 0.019 0.024 0.038 0.045 0.058 0.076

T1 0.035 0.848 5.977 97.452 511.133 1582.438 4023.968 0.054 1.846 13.431 209.099 1047.463 3291.367 8100.498

T2 0.066 0.376 1.299 7.203 18.189 44.073 85.359 0.073 0.705 2.211 9.298 23.549 45.5 73.55
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.2. Performance measures

In order to obtain a wealth of information about the experimen-

al results, we define the following metrics based on the four criteria

iscussed above, where the subscript α is used to denote the two al-

orithms (CIPS: α = 1; MSMC: α = 2):

1. The ratio of covered demands to total demand: zα ∈ [0, 1], and the

gap between them: Δz = z1 − z2. Since it has been shown that

the CIPS method is capable of yielding the optimal solution, the

coverage ratio of the CIPS z1 is always larger than or equal to z2.

2. The average weighted distance between all the covered data

points to the nearest facility: wdα =
∑

k∈Ω wkd′
k∑

k∈Ω wk

> 0, where Ω =
{yk}K

k=1
is the set of the K covered demand points and d′

k
denotes

the distance from the covered demand point k to the nearest facil-

ity located. This indicator can be viewed as the average distance

to unit demand, which is essential for the facility owner to min-

imize the transportation cost or time in practice. For example, in

locating emergency services, it is paramount to achieve coverage

as fast as possible. In the business context, a smaller wd usually

means greater cost saving under the condition of same coverage.

3. The size of the generated locations c is the number of candidate

locations after Stage 1, i.e., the number of elements in the DIPS.

fα is that in the CLS after Stage 2. A smaller fα stands for better

performance in reducing the size of the DIPS as it directly reduces

the possible solution space for solving MCLP in Phase II.
4. The total time consumed: Tα = t1
α + t2

α + t3
α . The three terms on

the right hand side of this equation represent the time cost in the

three stages, respectively. Note that the unit of these metrics is in

seconds.

In sum, the four groups of indicators for evaluating these two ap-

roaches can be divided into two categories, namely solution quality

nd solution efficiency.

.3. Results and discussion

We present all the results of the computational experiments in

ables 2–4. We also plot the plane and experimental results when

= 100 in Fig. 6, including the demand points, the final selected sites,

nd the coverage. The Random data set distributes the DPs uniformly,

hile the Blobs locates the DPs in three clusters. We generate the

ther two data sets in order to simulate demand regions that can be

epresented as an arc or a non-convex polygon.

.3.1. Solution quality

The first group of metrics in the result tables measures the pro-

ortion of covered demands, where z1 ≥ z2 as expected. Some-

imes Δz = z1 − z2 = 0, showing that MSMC has good potential to

each the optimal solution as the CIPS method. However, we also see

hat Δz = 0.15 in the worst case of the Circles data set with n = 20.

his result exposes the main weakness of the mean-shift procedure

n covering the DPs: it could ignore some points located at the low

ensity regions, especially relatively orphaned ones. For our objective
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Fig. 6. Experimental results when n = 100. The red stars are the final selected locations produced by the two algorithms. The red circles indicate their coverage of the green

demand points. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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Table 4

Experimental results for larger data sets (n > 500).

Index Random Circles Moons Blobs

1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000

z2 0.32 0.31 0.30 0.36 0.36 0.35 0.46 0.45 0.44 0.91 0.92 0.91

wd2 0.32 0.34 0.33 0.34 0.34 0.33 0.33 0.33 0.38 0.41 0.42 0.42

c 201,404 802,202 1,803,946 279,658 1,118,866 2,516,610 310,384 1,248,094 2,793,132 557,514 2,194,274 4,923,776

f2 1029 2112 3466 510 640 938 35 30 38 12 10 11

t1
2 4.287 17.107 39.643 5.055 20.492 46.447 5.233 23.445 49.020 7.640 36.268 71.696

t2
2 236.067 1471.970 5364.804 245.100 1780.306 5448.018 747.432 5572.793 18408.357 482.530 2636.919 6731.579

t3
2 1.339 9.213 29.819 0.621 1.626 4.325 0.183 0.392 0.496 0.103 0.277 0.461

T2 241.693 1498.290 5434.266 250.776 1802.424 5498.790 752.848 5596.630 18457.873 490.273 2673.464 6803.736

Fig. 7. The average coverage gap Δz and the average weighted distance Δwd of the

four types of data set.
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unction seeking to maximize coverage, the reader may argue that

15 percent loss of demand coverage is unacceptable. However, as

increases, the average coverage gap between MSMC and the CIPS

ethod (i.e., Δz) is diminishing as illustrated in Fig. 7, due to the

igher density that promotes the advantage of the mean-shift proce-

ure. Moreover, MSMC always outperforms the CIPS method in terms

f service cost reduction, i.e., Δwd = wd1 − wd2 ≥ 0. In fact, a linear

egression equation with R2 = 0.88 can be fitted to the obtained re-

ults in order to describe the significant positive relationship between

z and Δwd, as follows:

z = 0.8975 × Δwd − 0.0166. (12)

The gist of Eq. (12) is the second shortcoming of the CIPS method

iscussed in Section 2.2, i.e., at least two served DPs will lie on the

acility’s coverage boundary if an IP is chosen, yielding the farthest

istances between them. In other words, maximizing coverage is usu-

lly in conflict with shortening the service distance. Therefore, it is

challenge to simultaneously optimize these two conflicting objec-

ives. Facing this issue, the CIPS method completely neglects the dis-

ance factor, while MSMC achieves a reasonable trade-off between

overage maximization and transportation cost saving. Based on the

bove findings, we believe that the MSMC method can be a promising

pproach to address small- and medium-sized PMCLPs.

.3.2. Solution efficiency

For large-scale PMCLPs, however, MSMC may be the only viable

pproach to generate candidate locations. The fourth group of metrics

ndicates that the CIPS method experiences an exponential growth

n computational time, e.g., 2.25 hours for the Blobs data set with

= 500. For identical data sets, MSMC only takes tens of seconds

o produce the CLS, which can be one hundred times less than that
f the CIPS method as n increases. It is seen that Step 1 takes less

han two seconds to create the DIPS for both algorithms, i.e. t1
1

∼=
1
2 . The second step is the most computationally demanding oper-

tion whose time complexity is discussed in Appendix A. The final

tep widens the gap between the two algorithms’ performance since

SMC drops many more of the dominated candidate locations from

he DIPS than the CIPS approach does as n increases. Both Tables 2

nd 3 show that f1 > f2 when n ≥ 100, which is the main reason for
3
1

> t3
2

. Based on the above analysis, it is not surprising that MSMC

s much more efficient than the CIPS method to address large-scale

MCLPs.

It is also worth noting that as the DPs gather into clusters, most of

he performance metrics of MSMC improve. The main reason, as men-

ioned before, is that the increase in the local density helps MSMC

over more DPs within a fixed region. This factor also has a major

mpact on the size of the DIPS since more intersection points will

e calculated if the radius of a cluster is relatively small. As demon-

trated in Fig. 3(a), if the radius is less than 2 ∗ R, k DPs will generate

(k − 1) IPs. This is the reason why the Blobs data set produces a DIPS

f size 137,012 given n = 500, much more than the other data sets.

ompared with the CIPS method, which has to perform the compu-

ationally demanding isSubset check one hundred thousand times, it

s easy and fast for MSMC to locate the density mode just nearby. In

ther words, the iteration time before convergence is small, reducing

he complexity from O(τ ∗ c ∗ n) to O(c ∗ n).

Table 4 reports experimental results of MSMC when solving large-

cale PMCLPs. Comparing with Tables 2 and 3, the MSMC still per-

orms well in terms of solution quality. Meanwhile, the increased

xecution time (T2) is also acceptable given the large number of de-

and nodes, which could produce millions of intersection points in

IPS. There is an interesting finding that, although the Blobs data set

s always able to create the largest DIPS, the most time-consuming

nstance is the Moons. This is because the mean-shift process, which

s the bottleneck of MSMC, has to find more temporary means along

he semi circumferences before locating the LDM, leading to higher

ime complexity. Yet despite the large size of data sets and increased

ime complexity, our proposed MSMC approach has demonstrated to

e very successful in solving large-scale PMCLPs.

.3.3. Summary

The CIPS algorithm has high time complexity and may not be ap-

ropriate for solving large-scale PMCLPs in practice. In contrast, the

roposed MSMC, without the random factors, is a highly efficient tool

or dealing with large-scale PMCLPs. The limitation of the MSMC al-

orithm is that it may not contain an optimal solution to the PMCLP.

owever, our experiments suggest that the optimality gap of the so-

ution obtained using the CLS generated by the MSMC algorithm is

ikely to be small in practice. Furthermore, our experiments also sug-

est that the average distance to the demand points of the solution

ased on the MSMC algorithm is small. Table 5 summarizes the gen-

ral performance of the two methods based on the four criteria dis-

ussed in the Introduction.
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Table 5

Comparison of the CIPS method and MSMC by the four criteria.

Method Coverage Average distance to demand Size of CLS Time to generate CLS given n demand nodes

CIPS Optimal Two demand nodes may lie on coverage boundary Less for small-scale PMCLP O(n5) in the worst case

MSMC Equal to or less than optimum Center of covered demand nodes, local optimal Much less for large-scale PMCLP O(τ ∗ n3) in the worst case
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5. Conclusion

PMCLP can be applied to make strategic facility location decisions,

such as infrastructure investment, because it allows a given num-

ber of facilities to be placed anywhere on a plane for coverage maxi-

mization, so many more desired locations are available for selection.

However, due to the analytical difficulty of tackling geometrical com-

putation in a continuous plane, there is a need to identify potential

sites for evaluation, reducing PMCLP to the relatively simple MCLP.

The technique for determining the CLS has been mostly domi-

nated by the CIPS approach. This approach exploits the geometric

properties of coverage by identifying all the demand nodes plus the

intersection points as DIPS, and then drops the dominated points

from the DIPS in order to generate a reduced CLS. Although it has

been shown that the CLS created by the CIPS method contains

at least one optimal solution to the PMCLP, the CIPS method has

high time complexity and is generally unable to handle large-scale

PMCLPs.

This paper presents a deterministic algorithm MSMC, based on

a revised mean-shift procedure, to address large-scale PMCLPs. We

make three revisions to the original mean-shift procedure to adapt

it for PMCLP, and generate a number of data sets that vary in size

and distribution pattern to test MSMC against the CIPS method. Un-

like the CIPS method, we are able to generate the CLS for large PM-

CLPs in a reasonable amount of time. Besides computational time,

we also discuss the experimental results in terms of different perfor-

mance aspects of the algorithms, e.g., coverage ratio, weighted dis-

tance to customers, and CLS size. The experimental findings indicate

that MSMC strikes a reasonable trade-off between coverage maxi-

mization and transportation cost saving. Hence, the MSMC approach

is also potentially promising for solving small- and medium-sized

PMCLPs.

Although the examined PMCLP assumes Euclidean distance as the

coverage standard, the proposed MSMC algorithm remains applicable

if other distance metrics are used. For example, if the metropolitan

metric (rectilinear) distance measure is taken into account, MSMC

only requires a minor revision of changing the distance computing

function for the mean-shift procedure. Another difference concerns

the development of the intersection points whereby the coverage

area changes from a circle to a diamond, which may create an infi-

nite diamond intersect points set when the intersection set becomes

a line segment. Church (1984) commented on this case and suggested

the use of the two endpoints of the line segment as the IPs. There-

fore, the attributes of the diamond intersect points set are analogous

to those of the DIPS. In other words, all the key procedures of the two

algorithms can still be applied to solve PMCLP under the rectilinear

distance measure.

This study is an initial attempt to solve the location problem using

the mean-shift algorithm. Further research is possible such as devel-

oping a suitable mechanism to reconcile the solution features. More-

over, in our model, demand on the plane is represented as discrete

points, rather than lines or polygons. Applying MSMC or new algo-

rithms to optimally cover these shapes of demands is not only chal-

lenging but also interesting. Finally, the maximal service distance R

for each demand is a constant. In reality, it may vary due to the facil-

ity’s size, availability, or service standard. Therefore, relaxing this as-

sumption makes PMCLP much more applicable in practice, but such

a problem requires further in-depth research to address.
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ppendix A. Pseudo codes and time complexity discussion

.1. The DIPS generation procedure

Given the radii and centre coordinates of two circles, it is routine

o programme the process of recognizing their intersection points.

lgorithm 1 shows a piece of the pseudo code, whose main body con-

ists of two nested loops. Each line of the codes within the inner loop

s a constant-time operation, i.e., it runs in O(1) time. As each loop

eeds to execute n times, the time complexity of the whole proce-

ure is O(n2).

Algorithm 1: The DIPS generation procedure.

Data: A set Y containing n demand points with (x, y)

coordinates and coverage radius R.

Result: A set C consisting of intersection points and demand

points with their coordinates.

1 Create a temporary set copied from Y ;

2 for i in range(n) do loop Y

3 for j in range(n) do loop Y

4 di, j = distance between Yi and Yj;

5 if 0 < di, j ≤ 2R then

6 Calculate the coordinates of intersection points;

7 Add generated IPs to the temporary set;

8 end

9 end

10 end

11 Combine the temporary set and Y ;

12 Return the combined set as C;

.2. The DIPS reduction procedure

As noted by Church (1984), point A is considered to dominate

oint B if point A covers the same, or more than, all the demand

oints that point B can serve. Therefore, examining the coverage in-

ormation of each potential location is necessary before comparison.

s presented in Algorithm 2, we first construct an empty list with

ength c and fill it up with sublists of candidate node i’s covered data

oints. Note that this step runs in O(c ∗ n) time since the inside codes

re independent of n and c. The second part of Algorithm 2 is much

ore computationally demanding because the two nested loops take

ubquadratic time O(c2), where c could be as large as O(n2), as men-

ioned before. It is even worse that the function isSubset in line 13

lso has a time complexity of O(n) as � could have n members.
i
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Algorithm 2: The DIPS reduction procedure.

Data: Demand points set Y of size n, DIPS C of size c, and

coverage radius R.

Result: An CLS contains candidate locations.

1 Create a temporary list Ψ to store coverage information;

2 for i in range(c) do loop C

3 Create a sublist Ωi to catch the index of demand points

covered by i;

4 for j in range(n) do loop Y

5 di, j = distance between i and j;

6 if di, j ≤ R then

7 Add index j to Ωi;

8 end

9 end

10 end

11 for i in range(c) do loop Ψ
12 for j in range(c) do loop Ψ
13 if Ωi is a subset of Ω j then

14 Remove Ci from C;

15 end

16 end

17 end

18 Return C as CLS;

Algorithm 3: The mean shift procedure.

Data: Demand points set Y of size n, DIPS C of size c, and

coverage radius R.

Result: An CLS contains candidate locations.

1 Create a temporary set Ψ to receive obtained means (LDM);

2 for i in range(c) do loop C

3 NewMean = coordinates of Ci;

4 while True do mean-shift iteration

5 Create a list Ω to catch the index of demand points

covered by NewMean;

6 for j in range(n) do loop Y

7 d j = distance between NewMean and j;

8 if d j ≤ R then

9 Add index j to Ω;

10 end

11 end

12 OldMean = NewMean;

13 NewMean = the Mean of Ω;

14 if NewMean=OldMean then

15 Add NewMean to Ψ ;

16 Break the While loop;

17 end

18 end

19 end

20 Return Ψ as CLS;
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herefore, this part is the bottleneck in running the DIPS reduction

rocedure, whose time complexity could be O(c2 ∗ n) or O(n5) in the

orst case.

.3. The mean shift procedure

The mean shift procedure embedded in the MSMC is modified to

hare the same input and output parameters with the DIPS reduc-

ion process, as detailed in Algorithm 3. There are three nested loops,

imilar to the DIPS reduction as well. After initializing an empty set

or storing the identified unique means, the algorithm runs an outer

oop to pick each starting point from the DIPS of size c. The middle
oop is a do-while loop since the iteration time before convergence

s unknown, denoted as τ . Inside the do-while loop are two func-

ions. The first one is to compute the equal-weighted mean of the

overage window, requiring an inner loop to calculate the distances

o all the n points. Therefore, the time complexity of this function

s O(c ∗ τ ∗ n) = O(τ ∗ n3). The second function is to check and break

he do-while loop if the stop condition is met, without using a loop. To

um up, the time complexity of the mean shift procedure is O(τ ∗ n3)

n the worst case, which is much less than that of the DIPS reduction

rocedure.

ppendix B. Kernel function selection

Given the same 28 data sets mentioned in Section 4.1, we have

ested the MSMC using four different kernels as following:

• Flat kernel g(y) = 1;
• Gaussian kernel g(y) = e−‖y‖2

;
• Epanechnikov kernel g(y) = 1 − ‖y‖2, and

• Quartic kernel g(y) = (1 − ‖y‖2)
2
.

The coverage ratios are presented in Table B.1, where the maxi-

um ones are in bold.

Table B.1

The coverage ratios achieved by the MSMC using different kernels.

Data set n Flat Gaussian Epanechnikov Quartic

Random 20 0.8458 0.8458 0.7831 0.7831

60 0.4642 0.4288 0.3969 0.3969

100 0.5067 0.4320 0.4079 0.4042

200 0.3963 0.3787 0.3490 0.3640

300 0.3882 0.3882 0.3233 0.3332

400 0.3968 0.3773 0.3377 0.3400

500 0.3697 0.3691 0.3401 0.3404

Circles 20 0.4500 0.4500 0.3000 0.3000

60 0.4167 0.4000 0.3167 0.3333

100 0.3800 0.3800 0.3600 0.3200

200 0.3800 0.3700 0.3550 0.3350

300 0.3707 0.3700 0.3533 0.3467

400 0.3675 0.3650 0.3550 0.3575

500 0.3720 0.3660 0.3680 0.3560

Moons 20 0.6411 0.5321 0.4370 0.4370

60 0.5046 0.4935 0.4774 0.4599

100 0.4987 0.4748 0.4673 0.4910

200 0.5037 0.4796 0.4709 0.4576

300 0.4740 0.4740 0.4489 0.4581

400 0.4882 0.4853 0.4474 0.4573

500 0.4711 0.4587 0.4382 0.4581

Blobs 20 0.8000 0.7000 0.7000 0.7000

60 0.9000 0.6667 0.6667 0.6667

100 0.9000 0.6700 0.6700 0.6700

200 0.8650 0.6700 0.6700 0.6700

300 0.8847 0.8800 0.8847 0.6667

400 0.9150 0.6675 0.6675 0.6675

500 0.9140 0.6680 0.9140 0.6680
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