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Evolutionary Location and Pricing Strategies in
Competitive Hierarchical Distribution Systems:

A Spatial Agent-Based Model
Zhou He, T. C. E. Cheng, Jichang Dong, and Shouyang Wang

Abstract—Facing horizontal channel competition in a hierar-
chical distribution system, independent intermediaries such as
wholesalers and retailers are keen to find the optimal loca-
tion and pricing strategies that enable them to adapt to the
increasingly competitive business environment. To help market
intermediaries to address their challenges, we propose in this
paper a spatial agent-based model (SAM), grounded in complex
adaptive systems, which comprises four types of agents, namely
the world, the manufacturer, firms, and consumers. We derive the
firms’ optimal behaviors in response to competition by evaluating
the evolutionary location and pricing strategies using a genetic
algorithm. We observe that a pyramid structure and the bullwhip
effect in demand emerge from the evolutionary behavior of the
SAM. We also find that buyers’ searching ability enhanced by
information technology has a significant effect on the degree of
competition in a hierarchical distribution system. In addition, we
find that firms that distribute elastic goods are likely to lower
their prices to attract more buyers and move closer to their
suppliers to save transport costs. In the case that the product
demand is inelastic, intermediaries will move as close to their
buyers as possible because they can maximize their profits in the
SAM.

Index Terms—Agent-based modeling, competitive location
problem, complex adaptive system, hierarchical distribution
system, location and pricing.

I. Introduction

AFTER PRODUCTS are produced by manufacturers,
they must be distributed to the marketplace to reach

consumers. Distribution is the process of making products
available for consumption by consumers, using either di-
rect means or indirect means with market intermediaries. A
common example of an indirect distribution system is one
that involves many intermediaries such as wholesalers and
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retailers. Products are first distributed from manufacturing
plants to wholesalers, and then sold to other wholesalers at
lower levels if any, and then sold to retailers, which sell the
products directly to consumers. Therefore, the structure of an
indirect distribution system is basically a multilevel system of
facilities [1].

In a hierarchical distribution system, the different objectives
of its independent members may create conflicts when one
member’s actions prevent other members from achieving their
goals. Both wholesalers and retailers need to compete against
other firms at the same level within the distribution system for
the limited demand from buyers at a lower level. In response to
horizontal channel competition, profit-maximizing firms may
change their pricing strategies in the short term to promote
products and attract more buyers, or change their locations in
the long term to reduce transport cost and offer more efficient
services to customers. As a result, the pricing and location
decisions have great importance for firms in free markets.
They also result in complex spatial interactions between all
the members within a distribution system [2].

Over the past years, competitive location and pricing prob-
lems have been mostly studied for single-level systems (i.e.,
a single facility type). Previous research on the above issues
has been predominantly based on the methods of operation
research (OR). Under given assumptions, OR-based modeling
of a firm’s operations has focused on finding the optimal
solutions for such issues as competitive location, pricing
strategy, and inventory management [3], [4]. However, tra-
ditional mathematically-based OR techniques are impractical
in today’s hierarchical production-distribution context, which
is extremely complex (as the problems concerned are often
non-linear and non-convex with mixed integer and contin-
uous variables) because such mathematical models require
excessive computing time when spatially-interacting cases are
considered. Therefore, some researchers propose treating a
supply chain as a complex adaptive system (CAS) in order to
understand how the supply chain adapts to and co-evolves with
the dynamic environment in which it exists [5]. All relevant
aspects involved in a specific problem are considered and
integrated into a systematic model, and suitable methodolo-
gies and tools from the systems engineering discipline are
applied to deal with the complexity directly, such as systems
architecture analysis [6], system dynamics [7], [8], and system
simulation [9]–[11]. Agent-based modeling (ABM), one of
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simulation-based modeling methods, captures many of the
challenges facing contemporary supply chain practices by
dynamic modeling of the behaviors of firms and other entities
in a supply chain [12]. Therefore, spatial and iterative ABMs
provide a natural and dynamic representation of hierarchical
distribution systems with competitive and complex interaction
structures to gain powerful insights into the evolutionary
location and pricing problems.

In this paper, we propose a spatial agent-based model
(SAM) from the CAS perspective, in which there are only
one product and four types of agents for the sake of sim-
plicity, namely the world, the manufacturer, firms (comprising
wholesalers, retailers, and other independent intermediaries
that perform the distribution function), and consumers. We
solve the SAM using a genetic algorithm (GA) to address the
following research questions.

1) What are the optimal location strategies for the firms in
a competitive hierarchical distribution system when the
demand for the product is price inelastic?

2) What are the optimal pricing and location strategies for
the firms in the presence of a price-elastic product and
price-sensitive consumers?

3) Since transport cost makes up a significant share of the
total cost, what is its impact on the performance of the
entire system?

4) In a free market, some firms may be eliminated in an
increasingly competitive environment over time, which
can be considered as evolution, and new firms could
enter the market when certain conditions are met. So
how does the structure of the distribution system, which
is defined as the number of surviving firms at each
level in the SAM, change with evolution? We make a
contribution by resolving the above challenging research
and practical issues.

The remainder of the paper is organized as follows. In
Section II, we give a concise review of the related studies in
the literature. In Section III, we present the SAM, including
the assumptions and technical details. In Section IV, we design
a series of experiments to observe the evolution of the SAM
under different scenarios. In Section V, we present the data
analysis and discuss the results. In Section VI, we conclude
the paper and discuss the research and managerial implications
of the study. We also acknowledge the research limitations and
make suggestions for future research.

II. Literature Review

This paper is closely related to three streams of research,
namely location and pricing decisions, supply chain evolution,
and agent-based modeling.

A. Location and Pricing Decisions

The field of facility location analysis, coming basically
from the fields of operations research, regional science, and
geography, deals with the problem of locating new facilities
in a spatial market in order to optimize one or several
geographical and/or economic criteria, for example, overall

distance minimization, and transport and manufacturing cost
minimization [13]. Classical facility location problems, such
as the p-median problem, the p-center problem, and the
maximum cover location problem (MCLP) [14], have been
extensively studied in non-competitive situations. However,
most situations in practice do not fit such models and there
is a need to incorporate competition with other players in the
model [13]. Therefore, the competitive location problem that
considers the location and pricing decisions of a number of
new facilities that are planning to enter a market that may al-
ready contain some competitive facilities extends MCLP to the
competitive case [15]. Most early competitive location models
are based on the maximum capture problem (MAXCAP) [16]
under such assumptions as a single facility type, uniform
pricing of the product, and static competition [1], [17]. To
relax these strict assumptions, the MAXCAP model has been
adapted to consider facilities that are hierarchical in nature
and where there is competition at each level of the hierarchy
[18]. Besides, competition depends not only on location but
also on price [19], and game theory is introduced to inves-
tigate competitive equilibrium in the problem of two firms
competing in a spatial market [20], [21]. Although specific
optimal solutions can be obtained from analytical models via
mathematical analysis, these models are often limited in their
ability to reflect the dynamics of the production-distribution
system that is large-scale, non-linear, and complex [22].

B. Supply Chain Evolution

Supply chain evolution treats a supply chain as a continuing
evolving dynamic process driven by a number of factors.
Common methods to study supply chain evolution include case
study, evolutionary game theory, and ABM from a CAS per-
spective. Examples of works employing the first two methods
include the following. Fearne [23] suggests that establishing
trust in supply chain partnerships is important by describing
the evolution of supply chain partnerships in the British beef
industry using a case study. Fujita and Thisse [24] find that the
development of new information and communication technolo-
gies is one of the major forces that should be accounted for
in order to better understand the globalization and evolution
of supply chains. Zhu and Dou [25] propose an evolutionary
game model between governments and core enterprises in
greening supply chains, and find three evolutionary stable
strategies in three cases. Jalali Naini et al. [26] employ evo-
lutionary game theory and the balanced scorecard (BSC) for
environmental supply chain management (ESCM). To under-
stand the complexity of supply chains, CAS theory, proposed
by Holland [27], has been applied to model the dynamic
and evolutionary behaviors of SCM systems. Choi et al. [28]
argue that supply chains should be recognized as a CAS for
managing supply networks. Li et al. [29] provide a complex
adaptive supply network (CASN) based on CAS and fitness
landscape theory to investigate the evolutionary complexity
issues such as emergence, quasi-equilibrium, chaos, and lock-
in of CASNs. These works, especially CASN studies, have
enriched our understanding of the evolution of supply chains.
However, previous research has largely neglected consumers’
evolutionary behaviors and often assumes that the consumers
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exist in a static environment. On the contrary, consumers in
fact have the power through their fast-changing behaviors to
change the evolution direction of the hierarchical distribution
system in today’s dynamic and competitive business environ-
ment.

C. Agent-Based Modeling

Agent-based modeling, which is a new analytical method
for computational social science, combines elements of game
theory, complex systems, emergence, computational sociology,
multiagent systems, and evolutionary programming [30], [31].
The term agent denotes an individual or organization that
has the following characteristics: autonomy, social ability,
reactivity, and pro-activeness [32]. Therefore, an independent
intermediary in a distribution channel, which carries out tasks
by itself and interacts with other companies, is fit to be
modeled as an agent using computer programs to simulate
its behavior and gain insight into supply chain management.
Recently, the multiagent system (MAS) approach, a sub-
domain of ABM that comes from the discipline of distributed
artificial intelligence (DAI), has been widely adopted as an
intelligent IT support tool to study various SCM issues such
as decision making [11], [33], supply chain coordination [34],
product design engineering [35], planning and scheduling
optimization problems in manufacturing processes [36], [37]
etc. In fact, only a few studies have been conducted on the
spatial market using ABM. For example, Lombardo et al. [38]
simulate the dynamics of retailing locations by integrating an
MAS into a geographical information system (GIS) in eight
macro-zones with few links connecting 80 consumers and 12
retailers. Heppenstall et al. [2] design a multiagent model
to simulate the petrol retail market, and employ a GIS and
GA to explore the parameterization and verification of the
model. Chao et al. [39] propose a spatial ABM with customer
agents, commercial facility agents, and government agents, to
simulate commercial facility location choice in an 11*11 grid
virtual city. Despite increasing studies of MAS-based SCM,
there have been few spatial agent-based models proposed to
investigate the location and pricing decisions in hierarchical
distribution systems in a bottom-up way.

D. Summary

Motivated by the above observations, we set out to study
a hierarchical distribution system consisting of four types of
agents and model their behaviors from the CAS perspective.
It is worth noting that our model differs fundamentally from
previous work (i.e., the classical MAXCAP and its extensions)
in the following aspects.

1) The whole distribution system is considered as a hierar-
chical CAS wherein selected combinations of building
blocks at one level become building blocks at a higher
level of the organization [40]. For example, in the SAM,
the adaptive rules for all firm agents are exactly the same
when the firms act as independent individuals. However,
when they act as organizations playing the roles of retail-
ers, wholesalers, and top wholesalers at different levels,
the optimal location and pricing strategies of different

Fig. 1. Market structure of the SAM, which is assumed to be a hierarchical
CAS composed of k + 2 levels.

organizations vary significantly in a statistical sense.
According to CAS theory, the evolutionary location and
pricing strategies of these adaptive agents are emergent
phenomena, which help us to understand their complex
behaviors in reality. Therefore, we focus on the overall
strategies of intermediaries in response to competition
throughout the evolution of the proposed SAM, rather
than the specific optimal solutions of individuals in static
competition in traditional models.

2) From a methodological point of view, we apply spatial
ABM and GA, rather than traditional mathematical
analysis, to capture heterogeneity across individuals and
competitive interactions among them in the distribution
system.

3) The relaxed assumptions in the SAM, as well as the
reasonable mechanism for firms to enter and exit a free
market, enable us to model a hierarchical distribution
system in a more realistic way and achieve dynamic
equilibrium of the SAM through evolution.

III. Model Description

A. Overall Structure

Our SAM explicitly models micro-scale interactions among
the world, the manufacturer, firms, and consumers, and macro-
scale feedback of market transactions. Fig. 1 shows the overall
market structure of our distribution system composed of k + 2
levels, which consists of one world, one manufacturer at the
highest level k + 1, a specified number of consumers at the
lowest level 0, and competing firms at other k levels (k > 0).

Underlying the SAM are the following basic but essential
notions.

1) The order flow starts from a lower level and ends
at a higher level; while material flow moves in the
opposite direction. Therefore, the SAM corresponds to
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most supply chain models with a forward flow of goods
and a backward flow of information [41].

2) There is only one type of product in the SAM, which
is produced by the sole manufacturer and independently
priced by each seller. The single or homogeneous prod-
uct assumption follows the original maximum capture
problem with price model (PMAXCAP) [19], but a key
difference here is that each intermediary is able to opti-
mize its location and pricing behaviors independently,
while in PMAXCAP all the outlets of a given firm
charge the same price. The multiple products case, which
is not considered in this paper because it will result in
exceedingly high complexity,1 will be taken into account
in an extended version of the SAM.

3) Facilities, including wholesalers, retailers, and con-
sumers, get price information about the product from
the advertisements of close-by firms at a higher level
and choose to obtain the product from one firm only.
This assumption, called the single-sourcing policy, also
follows PMAXCAP and allows us to study how cus-
tomers’ behaviors influence firms’ decisions on location
and pricing.

4) The world agent generates new firms to enter the market
and removes some firms from the model if certain con-
ditions are met. In other words, we build a free market in
the SAM to simulate the natural selection process, which
is the driving force of evolution in biology. Therefore,
the optimal location and pricing strategies can be derived
from observing the evolutionary behaviors of surviving
firms.

5) Since most of the facility location models use networks
and planes for realistic spatial representations [19], we
model the world agent in the SAM as a 2-D grid with
X ∗ Y cells for an (x, y) coordinate (all coordinates are
integers). Other agents are represented as discrete points
and placed in the plane according to their coordinates.
Besides, co-location of agents is not permitted, as in [42]
and [19].

6) All the delays in production and transport are negligible
in the SAM, which means that the lead time of the
product is zero, and cargos from upstream entities will
be transported to downstream partners as soon as the
trade transactions between them are completed in each
time step.

7) Horizontal interactions among facilities are not explicitly
considered in our SAM. In other words, each agent,
which makes decisions independently, only reacts to
its upstream or downstream partners, if any. Although
the horizontal relations among the agents might exist in

1Incorporating more products in the present study could result in exponen-
tially increasing complexity in the SAM. For example, we need to define the
interrelationships among the products (are they substitutable, supplementary,
or independent of one another?) and examine the impacts of products’
interrelationships on the experimental results. We also need to consider the
number of product types that any of the firm agents offers. Moreover, given
large numbers of product and firm options, it will be difficult to find the
optimal consumers’ spatial behaviors. The above issues, which exist in the
real world, are beyond the scope of this paper to address.

real-world competition, such interactions are commonly
ignored in many studies [1].

In the following we discuss the various components of the
model in detail and explain the behaviors of the four types
of agents in a static time step as a snapshot of the SAM.
Appendix A summarizes all the parameters and variables used
in the SAM.

B. Consumers’ Behaviors

In our spatial model, demand for the product is assumed to
be concentrated at discrete demand points (consumer agents)
in a plane (the world). The position of each consumer is
fixed after random distribution upon initializing the SAM. As
a result, repeated experiments with random initial positions
of the agents yield a distribution of outcomes following the
Monte Carlo pattern.

Based on the assumptions of PMAXCAP [19], we divide
consumers’ behaviors in the SAM into three stages in each
time step: search, choose, and trade.

At first, a consumer (i.e., C0
i ) collects price information

from several nearby retailers (i.e., F 1
j ), which are sorted in

ascending order of the distances between them (dij) in the
SAM, through their advertisements. So the consumer knows
the selling prices of the product before deciding on a retailer
from whom to buy the product [43]. Besides, the number of
retailers from which the consumer gets price information θ is
fewer than or equal to the sum of all the available (surviving)
retailers at time t. Essentially, θ denotes the degree of the
searching ability of consumers enhanced by information tech-
nology in the market. If θ = 1, the consumer always chooses
the nearest retailer, so the price of the product has no effect in
this stage. As θ increases, the competition among the retailers
becomes fiercer because consumers have more retailers to
choose to shop with, which reflects channel competition in
the retail market. In fact, θ = 2 in PMAXCAP because
only two firms are studied. Note that the searching cost that
may exist in reality is ignored in our model and so is in
PMAXCAP.

After searching, we assume that each consumer can only
choose to shop with one and only one retailer in each time step
with its full demand, that is, the winner gets it all principle,
which follows PMAXCAP. In terms of the parameters and
variables of the model shown in Appendix A, we formulate the
consumer’s decision problem, in which the consumer’s goal is
to maximize his utility at time t, as follows:

Maximize

U(qij) = qij (1)

subject to

(Pj + vdij) ∗ qij ≤ Bi. (2)

In the above problem, each consumer seeks to maximize his
utility subject to his budget constraint. We can easily derive
the optimal quantity of the product that consumer C0

i buys
from retailer F 1

j as follows:

U∗
ij = q∗

ij = Bi/(Pj + vdij). (3)
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For a consumer C0
i at time t, the retailers F 1

j s from which
the consumer gets the price information can be sorted in
descending order of utility (U∗

ij). Then the consumer will
choose the retailer that offers him the maximum utility. Note
that the price Pj + vdij faced by consumers in each local
market is exactly the same as that in PMAXCAP, so consumers
in the SAM always patronize the retailer with the lowest
total price, regardless of its ownership, as that in PMAXCAP.
Besides, the budget constraint and utility notion, which come
from consumer choice theory in classical microeconomics, are
employed to model consumers’ behaviors in a reasonable way.

In the trade stage, the sum of all the consumers’ order
quantities (q∗

ij) makes up the total demand (Q1
j) for retailer

F 1
j , which we will further discuss in the section on firms’

behaviors.
In sum, the consumer agents in the SAM are able to collect

price information on products from several nearby retailers,
and compute their maximum utilities based on the distance
between them and the retail prices offered by the retailers.
To maximize his utility, each consumer agent will choose the
retailer that offers him the maximum utility to shop with in
the current time step.

C. Manufacturer’s Behaviors

Only one manufacturer at level k + 1 is modeled in the
SAM, which is assumed to provide an infinite quantity of
the product for consumers. The manufacturer is right in the
center of the 2-D lattice, and it never moves like consumers.
As the locations of consumers are randomly assigned in
simulation, the manufacturer could be far away from its end
customers. Therefore, this manufacturer in reality, especially
a small- and medium-sized one that cannot build its own
distribution channel due to high costs, needs to cooperate
with the intermediaries. In the SAM, the manufacturer delivers
the product to wholesalers at level k at the wholesale price,
which is also fixed and denoted by Pk+1. We simplify the
manufacturer’s behaviors to focus on firms’ behaviors.

D. Firms’ Behaviors

Similar to consumers, firms are modeled to search, choose,
and trade with their sellers at a higher level in each time step.
Then, surviving firms are able to optimize their decisions on
price and position to adapt to the competitive market.

Take a firm Fl
i at level l for example. It will search θ nearby

intermediaries at level l+1 for trade as long as it receives orders
from customers at level l−1. However, unlike consumers that
choose retailers to maximize their utilities, the firm Fl

i attempts
to minimize its purchase cost PCl

i and transport cost TrCl
i.

In the trade stage, Fl
i places an order equal to its aggregate

demand Ql
i to the chosen firm (i.e., Fl+1

j ). Therefore, firm Fl
i

makes a profit PRl
it and accumulates wealth Wl

i at time t. As
mentioned in the consumer’s trade stage, setting the selling
price Pl

i of the product and position (xl
i, y

l
i) in the 2-D zone

are the key decisions of firm Fl
i , which aims to maximize

its profit. We express the objective function of firm Fl
i in the

SAM as follows:

Maximize

PRl
i(price, position) = Rl

i − PCl
i − TrCl

i − FOCl
i (4)

subject to

Pl
i ≥ Pl+1

j (5)

where

Rl
i = Pl

i × Ql
i (6)

PCl
i = Pl+1

j × Ql
i (7)

TrCl
i = vdij × Ql

i. (8)

Both the fixed cost (FOCl
i) and marginal cost (PCl

i) are
considered in PMAXCAP. We add the transport cost (TrCl

i)
and pricing constraint (5) in the SAM due to its hierarchy.
That is, buyers always bear the transport cost; and the firms
will not engage in such a price war regardless of the purchase
cost.

Although the above optimization problem is stated in a static
time step, it is difficult to directly express the profit function,
given Pl

i and (xl
i, y

l
i) as independent variables, and to maximize

the profit in a dynamic context using traditional OR methods
for the following two reasons.

1) It is difficult to derive the optimal selling prices to
maximize firms’ profits because of the uncertainty in
the quantity of the product sold. Although the quantity
of the product sold is a decreasing function of its selling
price according to supply-demand theory in classical
microeconomics, which is true for most of the cases
of the SAM, buyers at level l are able to compare the
prices offered by different firms at level l+1 and choose
a single firm to shop with. Other surviving firms’ prices
are also independent of the firms’ sold quantities, and the
elasticity of buyer demand is hard to estimate because
the demand function is non-linear and imprecise.

2) It is very difficult to find the optimal location to balance
creating more demand against reducing transport cost.
Distance is an important criterion that buyers use to
select their trade partners in the search and choose
stages. Therefore, firms are motivated to approach their
buyers. However, if suppliers are located far away, such
movements could increase the transport cost, which
creates complexity in maximizing profit. To sum up,
because of the complexity, dynamics, and non-linear
feedback in the SAM, OR-based mathematical methods
cannot be applied to find the optimal decisions on price
and location of the firms in the absence of precisely
defined objective functions.

To address this problem, heuristic algorithms have been de-
veloped for tackling PMAXCAP and its extensions [44]. Here
we apply a genetic algorithm (GA) to produce approximate op-
timal solutions to maximize profit through heuristically search-
ing possible solution spaces. Compared with other heuristic
techniques to tackle optimization problems, GA mimics the
natural selection process and the mechanism of population
genetics. It uses probabilistic rather than deterministic rules
for solving many types of complex problems, and possesses
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Fig. 2. Firm in the 2-D world is able to move from the current cell to one
of eight neighboring cells in each time step.

a remarkable ability to focus on the most promising parts of
the entire solution space, which is a direct outcome of its
ability to combine strings containing partial solutions [45].
These features make GA a promising technique to find the
optimal decisions of the retailers by evaluating the evolution-
ary behavior of the SAM, given that retailers are selected
by consumers and may be eliminated over time in a highly
completive environment. Moreover, previous works [46], [47]
have demonstrated that GA is a popular and effective machine
learning algorithm to assist agents in making decisions, and
that GA can be used to address spatial interaction problems
with good performance.

We apply a GA that follows the steps shown in Table I.
Hanjoul et al. [48] note that separating location and price
decisions leads to suboptimality because location and pricing
decisions depend on each other. To overcome this problem,
we combine them in the GA procedure in each time step so
the firms are able to derive the optimal location and price
decisions at the same time. We introduce the parameter IMl

it

to determine whether or not firms move. We encode parameter
MDl

it in a three-bit binary variable in the GA, which stands
for eight move directions for each firm, as illustrated in Fig. 2.
Each movable firm faces a trade-off between moving close to
more buyers and moving to sellers in order to find the optimal
position in the current time step. Therefore, we introduce MDl

it

as an independent variable for all the firm agents to move in
a step-by-step way when IMl

it = 1. With GA, firms are able to
memorize their good pricing strategies and moving behaviors
(move or not, move directions) that generated high profits in
the past time steps. Moreover, firms are intelligent agents that
evolve toward better strategies to optimize their objectives.

E. World’s Behaviors

The world agent in the SAM can be viewed as a container
that keeps the manufacturer, firms, and consumers in. It per-
forms four important tasks to make the SAM complete. First,
the world needs to update the values of all the variables, such

TABLE I

Genetic Algorithm Procedure

as price, position, and other endogenous parameters defined in
the SAM. Second, the results are outputted by the world agent
for analysis. Third, the world agent is in charge of drawing
other agents in order to reflect the evolutionary location
behavior of the hierarchical distribution system. Fourth, the
world agent is designed to incorporate an entrance and exit
mechanism to emulate the evolution of firms over time. A
new firm will be added to a certain level of the distribution
system when one or both of the following conditions are met:

1) at the level where the profit of each firm increases;
2) at the level where the number of surviving firms is fewer

than two.
We attempt to build a perfect competitive market by means

of these two conditions. Each new firm is endowed with the
same wealth at the beginning of each simulation run and able
to make a profit (loss) that accumulates (depletes) wealth.
However, the world agent will eliminate the firm agents that
meet one or both of the following conditions, which reflect
the bankruptcy of under-performing market intermediaries in
the real world: 1) the wealth of the firm is negative and 2) the
profit of the firm remains negative in the past ten time steps.

These settings help us to examine the best strategies of the
firms, especially survivors with high performance reacting to
the competitive market, and to gain managerial insights from
observations of the evolutionary behavior of the SAM.

F. Summary

Fig. 3 summarizes the sequence of events in the SAM in the
form of unified modeling language (UML) behavior diagrams.
The scheme is quite straightforward and all the components
have been discussed above.

In the next section we discuss the simulation experiments
we performed to examine the interactions among the world,
the manufacturer, firms, and consumers, and derive insights
from the simulation results.

IV. Simulation

A. Experiment Design

We conducted four experiments using the SAM under
different scenarios: fixed price (Scenario A) and variable price
(Scenario B). Table II presents the parameter settings of the
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Fig. 3. UML time sequence diagram of the SAM.

four experiments. To the best of our knowledge, there are no
appropriate benchmark data that we can use to compare our
model with previous ones with regard to the specific problem
under study. Hence, the choices of the parameter values (e.g.,
the scale of the SAM and the initial states of the agents) are
arbitrary. We keep most of parameter settings unchanged in
all the experiments to reduce system instability and make the
experimental results comparable in a statistical sense. This
enables us to focus on the differences in the experiment results
that are mainly caused by changes in price adjustability and θ.
Note that the SAM can be easily scaled by adding or removing
agents if necessary without changing the model architecture,
which is a considerable advantage over conventional modeling
techniques for large and complex problems.

Under Scenario A, the pricing strategies of firms at the
same level are uniform and fixed. Therefore, location is the
only determinant of success in competition. Note that both
consumers and firms always trade with the nearest seller
regardless of the value of θ and the price of the product
because of the single-sourcing and fixed price assumptions in
Exp. A1. The optimal location strategies of firms could help
us to explore the regular pattern of the distribution of goods
with inelastic demand, such as gasoline.

Under Scenario B, each firm is able to optimize its location
and pricing strategies. The only difference among these four
experiments is the variable θ, i.e., the number of candidates
from which low-level agents are able to get price information.
As mentioned in discussing consumers’ behaviors, θ denotes
the degree of the searching ability of buyers. In reality, vari-
ous information technologies (IT) including the Internet, TV,

mobile APPs, and other telecommunication services that dis-
tribute commercial information such as advertisements, pricing
information, promotion etc to numerous buyers in a conve-
nient and efficient way lead to fiercer in- and cross-channel
competition in hierarchical distribution systems. Therefore, as
θ increases, buyers can collect more price information from
firms at a higher level, which means the firms face greater
competition in the SAM. We are interested to examine changes
in firms’ evolutionary behaviors that are driven by competition
in the IT era.

B. Implementation and Performance Measures

We conducted simulation experiments using the SAM on
the SWARM v2.2 platform2 with Java programming codes.
We performed each experiment with the SAM under the two
scenarios 30 times to ensure robust outputs. We carried out
the steps presented in Fig. 3 over 1000 time steps for each
experiment to examine and analyze the evolutionary behavior
of the SAM. Specifically, we focused on the dynamic changes
of the following variables in order to generate insight:

1) number of surviving firms at level l: SFl
t ;

2) average price offered by surviving firms at level l: P
l

t;
3) average distance between agents at level i to agents at

level j: d
ij

t ;
4) average order quantity of agents at level l: ql

t;
5) average transport cost between agents at level i to agents

at level j: TrC
ij

t .

The index SFl
t , defined as the structure of the distribution

system, reflects the degree of competition in the SAM. d
ij

t

and P
l

t can be viewed as location and pricing strategies of the
surviving firms at level l from the viewpoint of the entire level.
Besides, ql

t and TrC
ij

t provide information on the evolutionary
behaviors in a hierarchical distribution system.

V. Results and Discussion

The means and standard deviations of the indices in all the
experiments are presented in Table III. In order to display the
running of the SAM in a more vivid and dynamic way, we
provide an online video3 that records the simulation process
as sample runs for each experiment. Besides, we take the
snapshots of the plane of all the experiments in the final time
step in Fig. 4.

First, it can be observed that the number of surviving firms
(SFl) after 1000 time steps is a decreasing function of its
level (l) in all the experiments. In other words, although we
generated 20 firms at each level initially, the SAM always
developed a pyramid structure in the end. The pyramid struc-
ture is a classical supplier structure in an appreciable number
of industries, for example, automotive industry [49], which
have one or a few suppliers and numerous end customers.

2SWARM is a kernel and library for the multiagent simulation of complex
systems. Technical information of this platform can be accessed at .

3The video is uploaded on Youtube. Please visit . For the reader who
cannot visit and watch it normally due to technical problems, please e-mail
the corresponding author.
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TABLE II

Parameter Settings of the Four Experiments

Therefore, the pyramid structure is expected since we model
one manufacturer and 30 consumers. Another conjecture is
proved to be correct. As θ increases under Scenario B, SFl

drastically declines at each level. These results indicate that
consumer choice is a key factor that intensifies horizon-
tal channel competition in hierarchical distribution systems.
Moreover, the online video illustrates that the supply-demand
relationships between sellers and buyers in the SAM under
Scenario A are in a simple and stable condition. Proof in
reality can be found at gasoline stations in that rational drivers
are likely to purchase gasoline at the nearest stations since
gasoline demand is relatively inelastic to price changes, both
in the long and short terms [50]. However, under Scenario
B, the trade partner of each agent frequently changes due to
variable pricing and buyers’ enhanced searching ability. As
we will see later in this section, these changes from buyers
and the nature of the product itself have a profound impact on
firms’ behaviors.

Second, we turn our attention to firms’ pricing (P
l
) and

location (d
ij
) strategies to examine their evolutionary adapta-

tion. According to common knowledge, price should be lower
if competition is fiercer. As we see from Table III, P

1
keeps

in line with our guess; while P
2

and P
3

are not in Exp. B3.
We provide two reasons to account for this phenomenon. First,
note that in Exp. B3, there are high chances that SF 2 and SF 3

are less than θ (96.48% and 94.83%, respectively, according
to their distribution). Therefore, comparing with Exp. B2, the
competition driven by θ is not intensified in Exp. B3. In other
words, these firms need not lower their prices. Second, as
transport cost rises sharply in Exp. B3, it is not surprising
that the firms raise prices to maximize their profits. In fact,
these firms have dominated the upstream distribution system
through low-price competition. Hence, price wars at the right
time make sense, especially when they will drive undesirable
rivals to exit the market [51], [52].

Regarding the location decision, the winning principle in
Exp. A1 can be concluded as get as close to your customers as
possible as shown in Fig. 4, so d

ij
is small except d

34
because

there is only one manufacturer right in the center of the world,
and all the top wholesalers at level 3 have to trade with it no
matter where it is. However, this principle is discarded under

TABLE III

Means and Standard Deviations of the Indices

in All the Experiments

Scenario B because Table III indicates that d
ij

between low
levels is increasing (i.e., d

01
) while decreasing between high

levels (i.e., d
34

). The video also shows that firms frequently
adjust their prices but rarely move. In fact, pricing becomes
much more important than location to enhancing demand not
only in the SAM, but also in the real world. In the IT era,
location is relatively irrelevant and competition is intense in
the presence of e-business [53].

Another reason that firms concentrate under Scenario B is
that firms transfer the transport cost to their buyers, which are
designed to bear the logistical cost in the SAM. As shown in
Table III, TrC

ij

t generally grows mainly due to increasing order
quantities (ql

t) of the agents. Although retailers are further
away, consumers can buy more goods under the same budget
constraint as P

1
decreases under Scenario B. That is, from

the consumer’s viewpoint, it seems that they could gain more
utility from firms’ competition.
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Fig. 4. World agent in the final time step in the four experiments. White nodes represent consumers at level 0, green nodes are retailer firms at level 1, blue
nodes are wholesale firms at level 2, and red nodes are top wholesale firms at level 3. The gray node right in the center of the plane is the manufacturer at
level 4. Links among agents represent their current supply-demand relationships. (a) Exp. A1. (b) Exp. B1. (c) Exp. B2. (d) Exp. B3.

Moreover, it is worth noting that for the firms under
Scenario B, the standard deviation of the demand from buyers
is larger as one moves upstream in the SAM (further from
the consumers), as shown in Table III. As θ increases under
Scenario B, the change in demand significantly increases. In
response to uncertain demand, intermediaries often carry an
inventory buffer called safety stock in reality. A phenomenon
of larger and larger swings in inventory, which is similar to the
observed larger demand variations in the SAM, is known as the
bullwhip effect. As discussed before, changes from consumers
(θ) lead to price variations, which is believed to be a source
of the bullwhip effect [54].

Finally, there is more valuable information obtained from
the video. For example, under Scenario A, the existing firm
agents defend their profits against competition by moving
closer to their buyers. They are able to make stable profits, so
new firms are attracted to enter the market and SFl increases.
The existing firms then strengthen their location advantages
to push their rivals out, as a result SFl decreases. As the
process evolves, SFl achieves a dynamic equilibrium, and
indicators like d

ij
and TrC

ij

t smoothly decrease in the long
run. We can also find that our SAM is in dynamic equilibrium
under Scenario B with increasingly larger swings in all the
parameters due to intensified competition. These findings may
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explain why location can be a high barrier to entry into
markets with inelastic demand, and it is risky to enter highly
competitive markets. Besides, from a methodological point of
view, ABM and other system modeling techniques generally
outperform mathematical methods not only in examining how
the whole system evolves, but also measuring macro-level
results that emerge from micro interactions among agents.
Therefore, more appropriate tools (e.g., statistical tests, sys-
tems engineering methods) can be employed to analyze such
results and generate practical insights that help us to discover
and explain the complex patterns in real markets.

VI. Conclusion

In this paper we propose a spatial agent-based model (SAM)
to model a hierarchical distribution system with four types
of agents in a 2-D zone: 1) the world agent that creates
and eliminates firms to build a perfect competitive market;
2) the manufacturer agent that provides an infinite quantity
of the product for consumers; 3) changing number of profit-
maximizing firm agents at different levels that perform the
distribution function, and pursue suitable and evolutionary
location and pricing strategies; and 4) many consumer agents
that are able to collect price information on products from
several nearby retailers to maximize their utility by choosing
one retailer to shop with in each time step. We derive the
agents’ optimal behaviors in response to intensified competi-
tion by evaluating the evolutionary behavior of the SAM using
a genetic algorithm.

Our findings from the simulation outputs of four experi-
ments under two scenarios can be concluded as follows.

1) A pyramid structure always emerges in a hierarchical
distribution system composed of one or a few suppliers
and numerous end customers. The relationships between
buyers and sellers are relatively stable when the demand
function of the product is inelastic.

2) Buyers’ searching ability enhanced by IT has a signifi-
cant effect on the degree of competition in a hierarchical
distribution system. From the consumer’s standpoint,
they benefit from the competition.

3) Pricing strategies become much more important than
location decisions to enhancing demand in the presence
of e-business and intensified competition. Firms that
distribute elastic goods are likely to lower their prices
to attract more buyers and move closer to their suppliers
to save transport cost. In the case that the product has
an inelastic demand function, intermediaries will move
as close to their buyers as possible to maximize their
profits.

4) The bullwhip effect in demand emerges from the evo-
lutionary behavior of the SAM, which is fundamentally
caused by buyers’ searching behaviors that lead to price
variations.

Our SAM adopts the complex adaptive systems perspective
to model the optimal responses of agents in competition in a
bottom-up way, and identifies that the evolutionary and optimal
behaviors of agents are the driving force of the emergence of
the SAM. Our approach provides a promising framework and

TABLE IV

Variables and Parameters in the SAM at Time t

a viable methodology to study other complex issues in supply
chain management from an academic standpoint. Our findings
generate valuable practical insights for practitioners based
on realistic modeling of their optimal behaviors in today’s
fast-changing, increasingly competitive, and complex business
environment.

We suggest several future directions for this model. First, it
is worth modeling the manufacturer’s optimal behaviors. Each
firm in the SAM has its individual objective, so we could
model the manufacturer as an intelligent agent in detail to
simulate its adaptation and evolutionary behaviors. Second,
delays in production and transport, and other elements ignored
in our model for simplicity reasons can be taken into account
in an extended version of the SAM, which would make
agents’ behaviors much more realistic. Finally, it is desirable
to improve the structure of the SAM by, e.g., incorporating the
inventory management of the intermediaries in the market.
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Appendix A

Definitions of Variables and Parameters Used

See Table IV. W, M, F, and C in the “Owner” column are the
abbreviations for the world, manufacturer, firm, and consumer
agents, respectively. Superscripts of variables associated with
firms stand for their levels in the SAM.
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