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a b s t r a c t 

Private sector participation in municipal solid waste (MSW) management is increasingly being applied in 

many countries recently. However, it remains a largely unexplored issue whether different self-interested 

treatment operators can co-exist in an economically feasible and sustainable manner. To help the policy- 

maker s understand and manage competitive MSW treatment systems, this paper proposes an agent- 

based waste treatment model (AWTM) that consists of four types of agents, namely the refuse collector, 

specialized treatment unit (STU), the general treatment unit (GTU), and the regulator. An estimation- 

and-optimization approach is developed for profit-maximizing agents to set optimal gate fee and vie for 

specific waste in low-information competition. Based on the Singapore case, the experimental results 

imply that if the regulator deliberately promotes the STUs by intervening in waste allocation, the GTU 

could give up competing for the waste and greatly increase its gate fees as retaliation. Besides, driven 

by the increasing gate fee of the GTU, the STUs conservatively raise their gate fee; while the GTU will 

be the major beneficiary in the AWTM. Finally, to identify the optimal mixed policy under predefined 

constraints, the AWTM is integrated into a simulation-based optimization problem, which is solved by a 

genetic algorithm. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Sustainable municipal solid waste (MSW 

1 ) management is a

ritical issue for cities all over the world, especially for mega-cities

hat generate millions of tonnes of MSW annually. Take Shanghai

s an example, the total MSW generation in 2014 was 7.43 mil-

ion tonnes. In Singapore, the amount of solid waste generated

n 2015 increased to 7.67 million tonnes, up by 159,0 0 0 tonnes

rom 7.51 million tonnes in 2014 ( NEA, 2015 ). Historically, land-

ll disposal was deemed to be the most conventional way to deal

ith collected MSWs. However, it consumes and pollutes a con-

iderable amount of land, and sometimes causes hazardous liq-

id leakage and gas emission. Therefore, only incinerated wastes

i.e., ashes) are allowed to be decomposed by landfilling in some

and-scarce cities like Singapore. Although the incineration pro-
∗ Corresponding author. 

E-mail addresses: hezhou@nus.edu.sg (Z. He), xiongjie@u.nus.edu (J. Xiong), 

sentsa@nus.edu.sg (T.S. Ng), fanbo@sjtu.edu.cn (B. Fan), isesca@nus.edu.sg (C.A. 

hoemaker). 
1 Appendix A provides a list of abbreviations and acronyms, which are used to 

horten long sentences and achieve better readability. 
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ess significantly reduces the volume of waste, it produces diox-

ns that contaminate food, pollute the air and be absorbed through

kin, posing severe risks to public health. Hence, the traditional

ncineration-landfilling approach is insufficient for dealing with the

ising waste generation. 

In recent decades, advances in waste-to-energy treatment tech-

ologies have made notable improvement in both environmental

ustainability and energy recovery. For example, anaerobic diges-

ion can be applied to efficiently treat organic waste and recover

iogas, a mixture of different gases that can be further used in

ower generation. Moreover, the gasification is now able to recover

ignificant yields of synthesis gas and heat. These innovative MSW

reatment technologies are now commercially available in various

cales, allowing private capital to enter the MSW treatment mar-

et with a relatively low investment. In other words, private treat-

ent plants can be built in small or medium scale to treat specific

ypes of input waste like organic waste. Generally, these treatment

nits that only treat specific MSW stream components (termed as

pecialized treatment unit, or STU ) earn revenue in two ways: by

harging a per-tonne tipping fee (also termed gate fee ) for accept-

ng waste input from the waste collector; and by selling electri-

al energy output ( Ata, Lee, & Tongarlak, 2012 ). However, residues

http://dx.doi.org/10.1016/j.ejor.2017.05.028
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Fig. 1. Modern municipal solid waste treatment system. 
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generated from the waste-to-energy process could produce sec-

ondary pollution emissions in various forms like airborne and wa-

terborne contaminants. 

Therefore, such residue requires further processing by the gen-

eral treatment unit ( GTU , such as incineration), which can treat any

MSW stream component and residue, before final landfilling dis-

posal. As illustrated in Fig. 1 , different treatment units, which are

integrated to constitute the modern MSW treatment system, can

mutually reuse by-products and process residues, and thus they

achieve a collective environmental and economic benefit. 

Traditionally, waste management is regarded as a public ser-

vice, with the local government or authority having sole propri-

etorship of all entities and resources for the end-to-end activities

from waste collection to final disposal. However, the public sec-

tor often lacks critical professional managerial and technical skills

to operate advanced waste-to-energy treatment plants. Therefore,

private sector participation in MSW management activities is in-

creasingly being applied in many countries. Singapore, for exam-

ple, proactively encourages private companies to participate in the

MSW treatment industry ( Lim, 20 0 0 ). Currently, two of four in-

cineration plants in Singapore are owned and operated by Kep-

pel Seghers, a private company handling about 50% of combustible

waste collected daily in Singapore ( Tuan, 2016 ). 

To further improve service efficiency, a competitive MSW treat-

ment market can be established so that profit-maximizing private

operators are incentivized to compete for waste by lowering gate

fees and introducing innovative operations and technologies ( Lim,

20 0 0 ). Therefore, these private operators (i.e., STU and GTU) in-

teract with each other not only through co-treatment of waste

and residues, but also through gate fee competition for the mar-

ket share of available input waste. 

Such a scenario is motivated based on an actual case where

the current treatment approach for food waste is via conventional

combustion. Singapore’s environmental policy-makers are propos-

ing a feasibility study of improving food waste recycling by intro-

ducing anaerobic digestion units in the townships ( En, 2015 ). In-

dependent and qualified operators can be authorized to enter the

market as anaerobic digestion unit operators and offer their treat-

ment services to the waste collectors. On the other hand, the di-

gestion residuals require post-treatment by conventional combus-

tion for the purpose of volume reduction before landfill disposal. 

However, market competition could cause bankruptcy of key

private operators and consequently pose a serious risk to the sys-

tem’s stability and sustainability. In Singapore, for instance, the

under-utilization issue led to the closure of the largest private

 

naerobic digestion company IUT Global in 2011 ( The Straits Times,

011 ). Hence, there is a compelling need for the regulator to un-

erstand the competitive market and develop appropriate policies,

o that the MSW treatment market is able to run in an efficient

nd sustainable manner. 

In this paper we aim to propose an agent-based decision sup-

ort framework for the regulator in managing competitive MSW

reatment systems. Grounded in complex adaptive system (CAS)

heory, we create an agent-based waste treatment model (AWTM)

onsisting of four types of agents, namely one refuse collector,

ultiple heterogeneous STUs, one GTU, and one regulator. An

stimation-and-optimization approach is developed to help private

perators to optimize their gate fee decisions in low-information

ompetition. For the government, possible policies for regulating

uch a market include: (1) controlling the number of private par-

icipators; (2) intervening in waste allocation process; (3) impos-

ng an upper bound of gate fee; (4) offering a gate fee discount for

aste-to-energy units. We attempt to shed light on the following

hallenging research and practical issues: 

1. For the policy-maker, what are the aforementioned policies’ im-

pacts, pros and cons? How to identify the optimal mixed policy

to fulfill multiple predefined objectives? 

2. For the heterogeneous private operators, what are their perfor-

mances and optimal decisions under each policy? 

The reasons for using the ABM technique to studying the above

ssues are as follows: 

1. Traditional analytical methods are generally not suitable for

studying these issues due to the complexities of the AWTM,

which are two-fold. Firstly, there are multiple heterogeneous

entities in the AWTM, and their relationships are not only com-

petitive, but also symbiotic. Secondly, it is difficult to obtain the

full knowledge of all rivals, such as their technical information

about waste-to-energy treatment. Therefore, the private opera-

tors are not able to forecast precisely the decisions of others,

leading to low-information competition. In contrast, the ABM

approach has been increasingly applied for studying complex

issues in competition (see Section 2.3 ). 

2. Private self-interested operators can be modeled as agents,

since they carry out tasks independently and have the full

features of a typical agent, namely autonomy, social ability,

reactivity, and pro-activeness ( Wooldridge & Jennings, 1995 ).

Compared with traditional analytical methods, individual-level

modeling allows us to focus on their evolutionary decisions in

response to continuing changes in the dynamic environment.
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For instance, we are able to create multiple STU agents that are

heterogeneous in initial attributes, which are very important in

shaping their behaviors. 

3. Optimal gate fee decisions of treatment units can be viewed as

adaptive behaviors in competition. According to CAS theory, it

is adaptation that engenders complexity ( Holland, 1996 ). Adap-

tive agents iteratively respond to feedbacks by seeking optimal

operations and changing their actions in order to survive the

“natural selection” process, which is the driving force of evolu-

tion in biology ( Biava et al., 2011 ). Therefore, if individual ob-

jective functions are established, the long-term optimal strate-

gies can be derived from observing the evolutionary behaviors

of surviving agents as emergent phenomena. We focus on the

overall operations of private treatment units (i.e., STU) in re-

sponse to competition throughout the evolution of the agent-

based model, rather than the specific optimal solutions of indi-

viduals in static competition under traditional models. 

The rest of the paper is organized as follows. In Section 2 we

eview three related research streams. We model agents’ decision-

aking processes explicitly in Section 3 . Based on the Singapore

ase, we consider four practical scenarios and conduct various

omputational experiments in Section 4 . Next, we present the

xperimental results, highlight our research findings, and discuss

heir managerial implications for policy-makers in Section 5 .

inally, we conclude the paper and suggest potential topics for

uture research in Section 6 . 

. Literature review 

We review the literature based on three related research

treams, namely (1) decision support models for waste manage-

ent, (2) analyzing market competition in the waste management

ndustry, and (3) agent-based modeling in market competition. 

.1. Decision support models for waste management 

Over the past two decades, there is an increasing number of

ecision support models developed for guiding decision-makers to-

ard the choice of best strategy or the preferable selection among

 set of alternatives in the face of various strategic, tactical and op-

rational issues in MSW management systems. Most of them can

e categorized into one of three types: those based on cost-benefit

nalysis (CBA), those based on life-cycle assessment (LCA), and

hose based on multi-criteria decision analysis (MCDA) ( Morrissey

 Browne, 2004 ). 

The CBA-based model generally evaluates and optimizes the

ystem from economic perspective by translating all system im-

acts into a simple monetary measure. For example, Wu, Huang,

iu, and Li (2006) proposed an interval nonlinear programming

odel for designing optimal waste flows with the lowest total sys-

em cost by applying different economies-of-scale effects in the

SW transportation and treatment process. Li, Huang, Nie, and Nie

2008) developed a two-stage fuzzy robust integer programming

odel for optimizing waste flow allocation and facility capacity ex-

ansion with the purpose of minimizing the total system cost. 

By evaluating the direct and indirect environmental impacts

ssociated with the relevant inputs and outputs throughout the

ystem’s entire life cycle, the LCA-based model shows significant

dvantages in comprehensively assessing the system’s environmen-

al performance. For instance, Xiong, Ng, and Wang (2016) adopted

he LCA modeling approach to analyze the system’s environmental

erformance, and proposed a two-stage mixed-integer stochastic

rogramming model aiming at maximizing the joint probability

hat each installed treatment unit is able to achieve its own

nancial target. 
MCDA-based models simultaneously take several individual and

ften conflicting criteria into account in a multidimensional way

 Morrissey & Browne, 2004 ). Therefore, it is suitable for tack-

ing MSW management problems involving multiple stakeholders

ith different preferences. For example, Erkut, Karagiannidis, Perk-

ulidis, and Tjandra (2008) built a mixed-integer linear program-

ing model with multiple economic and environmental objectives

o solve the technology selection and location, and waste flow

lanning problems in an integrated MSW management system. As

ll objectives are considered to be equally important, this model

ims at obtaining a “fair” non-dominated solution with all normal-

zed objectives as close to one another as possible by applying the

exicographic minimax approach. 

.2. Analyzing market competition in the waste management 

ndustry 

Market competition in the waste management industry can

timulate the profit-driven private operators to improve their

ervice quality and operation efficiency. However, there usually

xist incompatibilities between the regulator’s perspective of

ealizing long-term sustainability targets and the private operator’s

ocus on short-term investment return ( Koppenjan & Enserink,

009 ). Therefore, there is an interest and value to study the roles

nd actions of regulator and private operator in a competitive

aste management market. Some relevant research outcomes have

een presented in the literature. Davila, Chang, and Diwakaruni

2005) proposed a two-tiered grey integer programming-based

ame theory approach to help scrutinize scenarios wherever

andfills display competitive behavior under an increasing need

or their services. The first-tier CBA-based model sifts for optimal

olid waste distribution with the objective of minimizing net costs

or cities, and the second-tier game theoretic pricing analysis

tudies the optimal tipping fee strategies at the landfill facilities.

árcena-Ruiz and Casado-Izaga (2015) studied a two-stage game

etween two private collection firms who pursue maximal pay-

ffs by deciding their locations (first-stage decision) and prices

second-stage decision) when the government requires private col-

ection firms or consumers to bear the waste transportation fees.

iu, Lei, Deng, Leong, and Huang (2016) developed a quality-based

rice competition model for the waste electrical and electronic

quipment (WEEE) recycling market to explore the impact of sub-

idy on both informal and formal sector, and discuss the optimal

ubsidy level for the entire WEEE recycling industry. 

.3. Agent-based modeling in market competition 

Although specific optimal solutions can be obtained from an-

lytical models via mathematical analysis, these studies paid lit-

le attention on incorporating some key characteristics of realistic

arket competition, such as incomplete information, multiple het-

rogeneous players and out-of-equilibrium dynamics. In contrast,

gent-based techniques have received considerable attention in re-

ent years as a result of a growing need for tackling complex is-

ues in market competition. In existing ABM studies, agents have

o adapt to and co-evolve with the dynamic CAS in which they

xist, allowing the modeler to observe the evolutionary behav-

ors of the surviving agents and understand the systematic emer-

ent phenomena. For example, Sofitra, Takahashi, and Morikawa

2015) used ABM technique to simulate supply networks, in order

o understand co-evolving relationships among interacting mem-

ers (i.e. cooperation, defection, competition and co-opetition).

ombined with system dynamics, heuristic algorithms, and other

lements, He, Wang, and Cheng (2013) , He, Cheng, Dong, and Wang

2014) , He, Cheng, Dong, and Wang (2016) proposed many ABMs

or the competing firms (e.g., retailers, logistics companies, service
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Fig. 2. The overall structure of the AWTM, which is assumed to be a CAS consisting 

of four types of agents: one refuse collector, multiple heterogeneous STUs, one GTU, 

and one regulator. The input waste stream and post-treatment residue stream are 

represented as solid line and dotted line, respectively. For each type of agent, its 

own model is expressed by the associated equation(s). 
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merchants), which attempt to optimize their operations (e.g., pric-

ing, location, inventory management) in different complex mar-

kets. Stummer, Kiesling, Günther, and Vetschera (2015) designed an

ABM to examine the temporal and spatial dimension of innovation

diffusion in a multi-product market considering consumers’ repeat

purchase decisions. To introduce a new product to such a compet-

itive market, the impacts of different pricing strategies were in-

vestigated. These studies have enriched our understanding of ABM

in market competition. However, we found few research that have

developed ABM to examine MSW treatment systems. 

Due to the existence of powerful policy-makers, competitive

MSW treatment systems are quite different from the above open

markets. From the perspective of the regulator, therefore, the ABM

technique is expected to serve as not only a simulation platform

for qualitative analysis, but also a quantitative decision support

tool for policy evaluation and development. To do so, the modeler

should be aware of the possible shortcomings of some ABMs dis-

cussed in the literature. Windrum, Fagiolo, and Moneta (2007) sug-

gested that there exist many difficulties in validating an ABM, in-

cluding (a) a lack of standard techniques for comparing ABMs,

and (b) the large number of parameters involved, leading to the

“over-parameterization” problem, etc. Some critics claim that the

ABMs rarely correspond to empirical data, and thus are only for

“toy problems” ( Rand & Rust, 2011 ). Besides, the simulation re-

sults are variable because of the random factors introduced in the

model. Therefore, the reproducibility of an ABM should be consid-

ered ( Grimm et al., 2006 ). 

2.4. Summary 

Our study advances previous research in several aspects. (1)

To the best of our knowledge, this paper is the first agent-based

study on the competition in integrated municipal solid waste treat-

ment markets. We extend existing studies by considering more re-

alistic situations and designing comprehensive simulation exper-

iments. (2) We provide a promising decision support framework

for policy-makers by modeling the decision-making process of in-

dividual agent in low-information competition, and by integrating

the AWTM into a simulation-based optimization problem. Due to

the valuable flexibility of the framework, large-scale and complex

studies, which are often cumbersome to model and solve mathe-

matically, can be conducted in a natural and bottom-up way. (3)

Our findings are obtained based on the micro interactions among

the agents throughout the evolution of the AWTM, rather than on

a static mathematical analysis. Therefore, the proposed model is

more likely to capture the actual complex decision patterns of pri-

vate operators, making calculated results more convincing. (4) Our

study overcomes some of the aforementioned shortcomings of the

agent-based modeling technique by building the AWTM on the ac-

tual MSW management practices and evidence in different coun-

tries, as well as the empirical data of Singapore’s waste industry

(see Section 3.1 and Section 4.1 ). Moreover, we design the Scenario

S1 to validate the AWTM, and perform the simulation process 100

times for each of 33 experiments to ensure robust outputs against

randomness in the AWTM (see Sections 4.1 and 4.2 ). 

In view of the above advantages, our work is able to provide

practical insights not only for the regulator, but also for the pri-

vate operators that participate in the competitive and integrated

municipal solid waste treatment market. 

3. Model description 

3.1. Overall structure of the AWTM 

The general process of MSW management is as follows. Mixed

MSW is first collected and presorted by refuse collectors. Next, ma-
erial recovery takes place for recyclable and re-usable items. The

emaining MSW is then sent to treatment units, and treated via

arious approaches (such as waste-to-energy) for volume compres-

ion and useful energy recovery. Residues generated may require

urther treatment. Finally, all post-treatment residues, and other

ntreatable components are disposed via landfilling. In the AWTM,

e focus on the MSW treatment stage of the process, as illustrated

n Fig. 2 . Table 1 summarizes agent-related variables used in the

WTM. Based on the actual MSW management practices in differ-

nt countries, we propose the following basic but essential notions

n the context of a competitive MSW treatment market. 

• The input waste stream components can be treated by both

STUs and the GTU (e.g. food waste). Also, the GTU is able to

treat residues from STUs. 
• There are m independent STUs competing for the input waste to

maximize profits by setting their individual gate fees. The gate

fee is an important component of the revenue stream of the

operator, and also a key instrument that the private operator

can use to make the treatment service economically attractive

to users. Empirical evidence of gate fee competition in Iceland

and Nigeria can be found in Cointreau-Levine (1994) and FCCA

(2016) . 
• The STUs (denoted by set I = { 1 , 2 , . . . , m } ) are heterogeneous

in per-tonne comprehensive operation costs ( μf > 0, where f ∈
I is a STU agent) and residual generation coefficients (i.e., the

weight ratio of generated residuals to original waste; denoted

by δf ∈ (0, 1)) since they may choose different waste-to-energy

technologies and equipment etc. 
• Due to economies of scale, only one GTU is considered in the

AWTM. A GTU (e.g., an incineration plant) is generally built in

large scale as it must be able to handle the full array of in-

put waste from MSW suppliers and process-generated residues

from STUs ( Miranda & Hale, 1997 ). Consequently, it requires a

high investment cost and has a large economics of scale. 
• Since the GTU plays an important role in the post-treatment

market due to monopoly, the regulator mandates an upper

bound ( η0 ) on its gate fee charge to prevent unrealistically high

waste/residues treatment costs, which are finally borne by all

citizens. For the STUs, in contrast, a regulated upper bound of

their gate fee is not necessary given the presence of competi-

tion. Later in Section 5 , the experimental results also justify this

assumption. 
• The regulator implements policies by changing some exogenous

variables besides the gate fee upper bound ( η0 ). Firstly, the reg-

ulator is able to intensify competition among agents by intro-

ducing more STUs (i.e., enlarging m ). Secondly, the regulator
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Table 1 

Agent-related variables used in the AWTM. 

Agent Variable Type a Remark Unit First equation 

Refuse W XV Volume of municipal solid waste Tonne (4) 

collector αg XV Price sensitivity to the GTU — (1) 

αs XV Price sensitivity to the STUs — (1) 

βg XV Waste utilization preference to the GTU — (1) 

βs XV b Waste utilization preference to the STUs — (1) 

STU f ∈ I ηf , t DV Gate fee SGD c / Tonne (1) 

π f , t NV Profit SGD (2) 

μf XV Operation cost SGD / Tonne (2) 

ω f , t NV Input waste from the market Tonne (2) 

δf XV Residue generation coefficient — (2) 

θ f , t NV The probability of randomly selecting a gate fee — —

GTU η0, t DV Gate fee SGD / Tonne (1) 

π0, t NV Profit SGD (6) 

μ0 XV Operation cost SGD / Tonne (6) 

ω 0, t NV Input waste from the market Tonne (6) 

η̄0 XV b The upper bound of the GTU’s gate fee SGD (7) 

d 0 XV b Gate fee discounting factor for the STUs — (2) 

θ0, t NV The probability of randomly selecting a gate fee — —

Regulator d m XV b Number of STUs 1 —

a DV: decision variable; NV: endogenous variable; XV: exogenous variable. The values of DVs and NVs are updated at each time step t ; while those of XVs remains 

unchanged after initialization. 
b Exogenous variables that the regulator can affect directly or indirectly. 
c Singapore dollar. 
d Some indicators measuring the performances of the AWTM are defined in Section 4.2 . The regulator attempts to affect these indicators by developing optimal policies, 

as discussed in Section 4.3 . 

 

 

 

 

 

 

 

 

m  

t

3

 

A  

t  

e  

m  

c

S

w  

t  

g  

i  

t  

t  

S  

a  

m  

t

 

i  

m  

t  

u  

(  

t  

s  

c  

a  

m  

3

 

p  

w  

f  

i  

a  

r  

p  

o  

(  

a  

o  

p  

c  

t  

m  

l

m

s

w

 

t  

o

δ  

u  

o  

b

can affect the refuse collector’s preference to STUs by propagat-

ing the importance of waste-to-energy treatment (i.e., enlarg-

ing βs ), so that the refuse collector will allocate more waste to

STUs. Thirdly, the regulator requires that, the GTU should offer

a discounted gate fee ( d η0 , d ∈ (0, 1)) to STUs when treating

residues, making the waste-to-energy business profitable. 
• For the sake of simplicity, all the STUs’ price sensitivities and

waste utilization preferences are identical, i.e., α1 = α2 = · · · =
αm 

= αs , β1 = β2 = · · · = βm 

= βs . 

In the following we discuss the various components of the

odel in detail and explain the behavior of each agent in a static

ime step t as a snapshot of the AWTM. 

.2. The refuse collector’s behavior 

After presorting and recycling MSW, the refuse collector in the

WTM forwards the input waste to the treatment units according

o their gate fee attractiveness and the refuse collector’s prefer-

nces. This process is modeled by the multinomial logit demand

odel (MLDM). In the AWTM, the market share of input waste re-

eived by treatment unit f ∈ F = { 0 } ∪ I is given by: 

 f (η) = 

e β f −α f η f 

∑ 

f∈F e 
β f −α f η f 

, ∀ f ∈ F, (1) 

here gate fee vector η = (η0 , η1 , . . . , ηm 

) and α > 0. The func-

ion β f − α f η f associated with treatment unit f ∈ F can be re-

arded as a first-order approximation for the “attractiveness” of us-

ng treatment unit f . Therefore, the regulator can promote waste-

o-energy utilization by affecting the refuse collector’s preference

o STUs, i.e., βs > βg . In that case, more waste will be allocated to

TUs rather than the GTU, even though αs = αg and all gate fees

re identical. The refuse collector needs to pay for using the treat-

ent service provided by private operators after delivering MSW

o them. 

We select the MLDM to simulate the refuse collector’s behav-

or for two reasons. Firstly, taking the revenue management and

arketing research for example, the MLDM can easily capture cus-

omer preferences toward different characteristics of a given prod-

ct and quantify the probability that customers would choose it
 Besanko, Gupta, & Jain, 1998; Guadagni & Little, 1983 ). This fea-

ure allows the refuse collector (affected by the regulator) to con-

ider multiple aspects when allocating waste, such as treatment

ost and waste-to-energy utilization. Secondly, the MLDM has been

pplied to describe the behavior of choice-maker in previous waste

anagement studies ( Efaw & Lanen, 1979; Ku, Yoo, & Kwak, 2009 ).

.3. The STU’s behavior 

After receiving the input waste and the corresponding gate fee

ayments from the refuse collector, the STUs convert the incoming

astes into recovered energy product (e.g., electricity and fuel gas)

or sales. Real cases of treatment unit’s operations can be found

n United States ( Ata, Lee, & Tongarlak, 2012 ). Besides, the STUs

lso need to pay the GTU for its service of post-treating generated

esidues. For example, in the case of Kalundborg City, public and

rivate enterprises buy and sell residual products, resulting in tons

f reduced waste emissions and recycled waste resources each year

 Gulipac, 2015 ). In the AWTM, the per-tonne comprehensive oper-

tion costs of a STU f (i.e., μf ) is equal to all variable treatment

peration costs (including transportation and process cost) minus

er-tonne energy revenue. In practice, μf > 0 because selling re-

overed energy is much less profitable. In contrast, the gate fee is

he major portion of a STU’s revenue. Therefore, the profit maxi-

ization model for a STU (namely ∀ f ∈ I) can be defined as fol-

ows: 

ax 
η f,t 

π f,t = ω f,t (η f,t − μ f − δ f d 0 η0 ,t ) , (2) 

 . t . η f,t ≥ μ f , (3) 

here ω f,t = W S f,t . (4) 

The objective function (2) maximizes the profit of a STU f at

ime step t , which is computed by the AWTM using the product

f the total input waste received WS f , t and profit rate η f,t − μ f −
f d 0 η0 ,t . As mentioned in Section 3.1 , for the STUs, a regulated

pper bound of their gate fees is not necessary in the presence

f competition. Therefore, the STU agent only considers the lower

ound μf , as expressed by Constraint (3) . 
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Fig. 3. A sample STU’s recorded data and estimated regression curve in a simulation experiment. 
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The barrier for a STU to tackling the above optimization prob-

lem is the difficulty in accessing the sensitive private knowledge

of its rivals. Besides, the market share captured by a STU S f , t ( ηt ) is

also a function of all agents’ latest decisions on gate fees. In other

words, a precise prediction of other agents’ optimally-changing

behaviors requires full knowledge of their information, which is

deemed to be impossible in reality. Therefore, it is infeasible to

directly find the optimal solution for STUs using traditional OR-

based mathematical methods due to the complexity, dynamics,

non-linear feedbacks among interweaving agents in the integrated

AWTM. 

To help STUs determine their optimal gate fees in the black-

box context, we propose an estimation-and-optimization approach

which consists of two steps: (1) estimation of unknown parame-

ters, and (2) searching for the optimal gate fee. Firstly, each agent

will record all its previous (gate fee, averaged profit) data. Hence,

in time step t , the agent f should have t − 1 historical records

(X, Y ) = { (η f,τ , π f,τ /W ) } t τ=1 
to fit the following non-linear regres-

sion model: 

Y = 

e a 0 + a 1 X 

e a 0 + a 1 X + a 2 
(X + a 3 ) . (5)

Regression model (5) is converted from Eqs. (1) and (2) . The

parameters ( a 0 , a 1 , a 2 , a 3 ) are assumed to be unknown or un-

certain due to unaccessible information or other agents’ chang-

ing behaviors. However, this assumption can be easily relaxed in

the event that some information is available to the agent. In fact,

the parameters a 0 = β f and a 1 = −α f . If agent f can obtain the

accurate αf and β f from the refuse collector, the good-of-fitness

of regression will increase and thus the agent is more likely to

make better decisions due to the lessened uncertainty in estima-

tion. After estimating current parameters of the non-linear regres-

sion model, the agent f obtains a function describing the relation-

ship between gate fee and profit according to its personal experi-

ence in the dynamic black-box competition. 

Fig. 3 provides an example of recorded data and estimated re-

gression curve of a STU agent at t = 10 0 0 in a simulation experi-

ment. Another important information obtained from Fig. 3 is that,

the left side of the regression model (5) is non-decreasing; while

the right side is non-increasing. In other words, the STUs are not

interested in an unreasonably high gate fee which is likely to yield

almost zero profit. Hence, there is no necessity for the regulator

to implement gate fee upper bound for the STUs, which is consis-

tent with the fifth assumption presented in Section 3.1 . The sec-

ond step is to decide the gate fee. Here we introduce a probabil-

ity θ f ∈ [0, 1], which will linearly decrease from 1 to 0 with in-
reasing time step t . If a random number is less than θ f , t in time

tep t , the agent f will choose a gate fee arbitrarily according to

f,t ∼ U(μ f , 2(μ f + δ f d 0 ̄η0 )) . The upper boundary of this uniform

istribution is set to be sufficiently large so that the STU agent has

 chance to choose a relatively high gate fee. Therefore, given a

ecreasing θ f , the agent f randomly selects a gate fee at the be-

inning of simulation, but the probability of making arbitrary de-

isions continues to decline since the agent has significantly in-

estigated the possible gate fee decisions. If the agent decides to

ptimize its decision in time step t , the optimal gate fee η f,t+1 

nder Constraint (3) can be identified using general optimization

lgorithms. According to Fig. 3 , for instance, the agent’s optimal

ate fee is about 80. After submitting new gate fee η f,t+1 to the

efuse collector, new profit will be gained in the next time step

 + 1 . Even though η f,t+1 is equal to ηf , t , the new profit π f,t+1 

an be different from π f , t as the other agents may change gate

ee settings. No matter what type of decisions the rivals made pre-

iously, the agent only collects and uses the actual (gate fee, av-

raged profit) data to estimate uncertain parameters of his/her re-

ression model for decision-making. 

The advantages for using this date-driven decision-making

rocess are as follows: (1) it mimics the heuristic trial-and-error

ethod, which is often used by people who have little knowledge

n the problem area. Initially, there was no knowledge about the

gate fee & profit” relationship. Hence, the STU agent tested a

andom gate fee and then obtained profit from the market. As the

imulation iteratively runs, the STU agent has collected sufficient

nformation to make more reasonable decisions. Therefore, the

rial-and-error process ends. (2) it takes full advantage of limited

nformation for decision-making, similar to what people actually

o, for example, in predicting future sales and stock prices. In

he AWTM, each STU agent only has its own private data such as

peration cost and gained profit. As we can see from the afore-

entioned description, all available information are utilized in the

ecision-making process. If more information become accessible,

his approach can easily utilize them to reduce uncertainty in

ecision-making process. (3) it can be applied to facilitate similar

ncertain decision-making in ABMs. Due to the embedded non-

inear regression technique and general optimization algorithms,

his approach has great potential for agents to identify their

ptimal solutions without discretizing some inherent continuous

ariables. 

In conclusion, the STU agents in the AWTM are profit-

aximizing and self-interested. In order to search for their optimal

ate fee decisions in a competitive and complex market, STUs take

ull advantage of limited information by employing an estimation-
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Table 2 

The main components in the AWTM. 

Type Components in the AWTM 

Normative The estimation-and-optimization decision-making process 

of STU/GTU. 

The refuse collector’s behavior (i.e., multinomial logit 

demand model, MLDM). 

Descriptive The model structure and basic notions of the AWTM. 

The variables and mathematical model of agents. 

The relationships and interactions among agents. 
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nd-optimization approach based on personal historical records.

hese settings help us simulate the evolutionary behaviors of pri-

ate operators in a reasonable way. 

.4. The GTU’s behavior 

For the GTU, its revenue stream comes from collecting gate fee

rom both the refuse collector and STUs, as well as selling re-

overed energy products. Similarly, the GTU’s profit maximization

odel is stated as follows: 

ax 
η0 ,t 

π0 ,t = ω 0 ,t × (η0 ,t − μ0 ) + 

∑ 

f∈I δ f ω f,t × (d 0 η0 ,t − μ0 ) , (6) 

 . t . μ0 ≤ η0 ,t ≤ η0 , (7) 

here ω 0 ,t = W S 0 ,t . (8) 

Eq. (6) represents the profit function of the GTU. Note that the

er-tonne disposal service cost charged by the landfilling plant has

een integrated into the GTU’s operation cost μ0 in Eq. (6) . Con-

traint (7) satisfies the corresponding government regulations. 

By applying the same mechanism described in the STU’s

ecision-making process, the GTU is also able to identify its opti-

al gate fee in black-box competition efficiently and reasonably. By

ombining Eqs. (1) and (6) , the GTU’s non-linear regression model

an be formulated as follows: 

Y = 

(X − μ0 ) e 
a 0 + a 1 X + a 2 (d 0 X − μ0 ) 

e a 0 + a 1 X + a 3 
. (9) 

After fitting the model with recorded data (X, Y ) = { (η0 ,τ ,

0 ,τ /W ) } t τ=1 
and searching for the optimal gate fee η0 ,t+1 under

onstraint (7) , the GTU is able to join the competition in the inte-

rated AWTM under low information. 

.5. The regulator’s behavior 

In the AWTM, the regulator is able to develop and imple-

ent policies by changing the initial values of different exogenous

ariables. As marked in Table 1 , the four policies mentioned in

ection 1 correspond to the number of STUs ( m ), waste utilization

references ( βs ), upper bound of the GTU’s gate fee ( ̄η0 ), and the

TU’s gate fee discounting factor for the STUs ( d 0 ). We are inter-

sted in how the performances of the integrated system change

nder different policies by the regulator. 

In next section, we define a series of indicators that measure

he performances of agents and the model. To further support

he regulator in optimizing mixed policy, the AWTM is integrated

nto a simulation-based optimization problem mathematically ex-

ressed in Section 4.3 . 

.6. Summary 

In this section we explicitly define each agent’s attributes and

ehavior interacting with the other agents. Table 2 summarizes the

ain components in the AWTM. Descriptive components are based
n actual MSW management practices in different countries; while

ormative components are related to norms or standards of waste

reatment. We have justified these components and suggest that

hey are reasonable settings of the AWTM. 

Before we start the simulation experiments, the agents’ behav-

or should be scheduled in a time step for implementation in the

omputer simulation programs. Fig. 4 summarizes the sequence of

vents in the AWTM in the form of a unified modeling language

ehavior diagram. Note that the AWTM also performs three impor-

ant tasks in the simulation. First, it initializes agents’ exogenous

ariables after the regulator develops a policy. Second, the AWTM

eeds to update the values of all the variables, such as operators’

rofits, input waste, and other endogenous parameters defined in

able 1 . Third, if the AWTM meets the stop criterion, the simula-

ion will be terminated and all important data will be saved for

urther analysis. 

. Simulation 

.1. Experimental design 

We conduct 33 experiments using the AWTM under four differ-

nt scenarios, namely Scenarios S1, S2, G1 and G2. Table 3 presents

he parameter settings of simulation experiments. The default val-

es of some variables mainly come from literature and Singapore’s

aste statistics. Although we solely select food waste as an exam-

le in this computational study, the policy-maker can apply the

WTM for handling with different wastes. Note that the m STUs

re heterogeneous in operation cost and residue generation coeffi-

ient since random values are assigned to μf and δf at the begin-

ing of simulation. 

Scenarios S1 and S2 are designed to understand the impacts of

egulating STUs on the system performances. The only difference

mong the seven simulation experiments under Scenario S1 is the

hanging number of STUs, i.e., m . Therefore, the AWTM under Sce-

ario S1 is basically comparable to a perfectly competitive mar-

et that has been extensively investigated by economics. In other

ords, we can use Scenario S1 to validate the AWTM since vali-

ation is a crucial step in modeling ABMs ( Bonabeau, 2002 ). Un-

er Scenario S2, the regulator intentionally alters the refuse col-

ector’s utilization preference to the STUs (e.g., through education

r publicity) so as to influence their received wastes (i.e., ω f ).

his situation usually happens when the regulator intends to pro-

ote/suppress the utilization of some STUs with better/worse sus-

ainability and operation efficiency. Therefore, the Scenario S2 can

e utilized to discover how such regulator’s intervention affects the

ptimal decision and performance of different agents. 

Under the other two scenarios, we attempt to examine changes

aused by the different regulations on the GTU’s operations. In par-

icular, the regulator adjusts the upper bound of the GTU’s gate

ee η̄0 under Scenario G1, and also the GTU’s gate fee discount-

ng factor for the STUs d 0 under Scenario G2. We can compare the

nfluences under different scenarios and thus provide managerial

nsights for policy-makers. 

.2. Implementation and performance measures 

We develop the AWTM using Python, and perform each exper-

ment 100 times to ensure robust outputs against randomness in

TUs’ initial attributes, agents’ gate fee decision-making etc. All the

00 independent tests of each experiment can be well compared

nd reproduced by assigning {0, 1, 2, ..., 99} as random seeds. The

vents presented in Fig. 4 were carried out 10 0 0 times for each

est, i.e., each simulation stops at t = 10 0 0 . Therefore, the total

omputation load is: 33 experiments under four scenarios × 100

ests with different random seeds × 10 0 0 time steps. 
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Fig. 4. The time sequence diagram of the AWTM. The grey rectangles represent involved objects such as agents and the model. White rectangles and horizontal solid lines 

demonstrate the events and interactions among objects, respectively. 

Table 3 

Values of exogenous parameters in the simulation experiments. 

Parameter Default value Remark Unit Source Changed values under scenario 

m 5 Number of STUs 1 — { 2 , 3 , . . . , 8 } under Scenario S1 

W 785,500 Volume of food waste Tonne NEA (2015) Unchanged 

αg 0.1 Price sensitivity to the GTU — — Unchanged 

αs 0.1 Price sensitivity to the STUs — — Unchanged 

βg 15 Waste utilization preference to the GTU — — Unchanged 

βs 15 Waste utilization preference to the STUs — — { 10 , 11 , . . . , 20 } under Scenario S2 

η̄0 100 The upper bound of the GTU’s gate fee SGD — { 20 , 40 , . . . , 180 } under Scenario G1 

d 0 0.5 Gate fee discounting factor for the STUs — — { 0 . 1 , 0 . 2 , . . . , 0 . 9 } under Scenario G2 

δf U (0.21, 0.41) Residue generation coefficient of STU f — De Bere (20 0 0) Unchanged 

μf U (43.63, 63.63) Operation cost of STU f SGD/Tonne McCrea, Tan, Ting, and Zuo (2009) Unchanged 

μ0 6.67 Operation cost of the GTU SGD/Tonne McCrea, Tan, Ting, and Zuo (2009) Unchanged 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to bear. 
To comprehensively measure the system performances, we de-

sign the following indicators and their values at time step t = 10 0 0

for further analysis: 

1. Average gate fee of the STUs and the GTU: η̄s = 

1 
m 

∑ 

f∈I η f ,

ηg = η0 . 

2. Total profit of the STUs and the GTU: 
s = 

∑ 

f∈I π f , 
g = π0 . 

3. Average regression reduced chi-square value (i.e., mean square

of residual) of the STUs and the GTU: ū s = 

1 
m 

∑ 

f∈I u f , u g = u 0 ,

where u f is the agent f ’s residual sum of squares divided by the

number of degrees of freedom. These two metrics can be used

to measure the prediction uncertainty when the agent is de-

termining its gate fee. For example, if ū s or u g is small, which
means the historical data well fits the agent’s non-linear regres-

sion model, then the agent is more confident about the esti-

mated price-profit curve. Hence, the agent is able to decide the

most promising gate fee. In contrast, larger ū s or u g implies that

the estimated regression model is more doubtful. Therefore, it

is more uncertain for the agent to identify the optimal gate fee.

4. Total allocated waste of the STUs and the GTU: �s = 

∑ 

f∈I ω f ,

�g = ω 0 . 

5. Total payment for using treatment service provided by the STUs

and the GTU: �s = 

∑ 

f∈I η f ∗ ω f , �g = η0 ∗ ω 0 , and � = �s +
�g . From the perspective of the public sector, these key indica-

tors record the total waste treatment cost that the citizens have
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6. The correlation coefficient measuring the linear relationship be-

tween STU’s endowment and earning: R 2 s . Since hundreds of

heterogeneous STUs are generated in each experiment, we seek

to examine statistically the relationship between their endow-

ments and earnings. In particular, we create 33 multiple lin-

ear regression models in the following form: π f = b 0 − b μμ f −
b δδ f . The goodness-of-fit is denoted by R 2 s , i.e., the coefficient

of determination. We find that all the estimated parameters b 0 ,

b μ, and b δ are positive numbers, as expected. However, we are

more interested in how strong the relationship is. The correla-

tion coefficient R 2 s could help STU managers to understand the

importance of reducing operation cost and generated residues

in competitive and integrated MSW treatment markets. 

.3. Extending the AWTM to a simulation-based optimization 

roblem 

The experimental results derived from simulations under above

cenarios should be able to answer all the research questions pro-

osed in Section 1 , except identifying the optimal mixed policy

or the regulator who has multiple predefined objectives. In re-

lity, developing policies can be viewed as a multi-objective de-

ision process, since stakeholders often have conflicting interests.

o manage a competitive MSW treatment market with private par-

icipation, the regulator may need to consider the following as-

ects: reducing the total treatment payment for the citizen, min-

mizing the caused performance fluctuation and negative effects

or the private operators, maximizing the expected effectiveness

f the policy, promoting waste utilization for the environmental

ustainability, difficulties in implementing the policies, etc. In this

tudy, we assume that the regulator has the following optimization

roblem: 

max 
,βs , ̄η0 ,d 0 

min 

∀ f∈I 
π f , (10) 

 . t . � ≤ �, (11) 

�s / �g ≥ �s/g , (12) 


g ≥ 
g , (13) 

m ∈ [2 , 8] , (14) 

m ∈ Z , (15) 

βs ∈ [10 , 20] , (16) 

η̄0 ∈ [20 , 180] , (17) 

d 0 ∈ [0 . 1 , 0 . 9] , (18) 

here function (10) represents that the regulator attempts to max-

mize the minimum profit across all STUs by searching for the op-

imal mixed policy (m 

∗, β∗
s , η̄

∗
0 
, d ∗

0 
) , so that the competitive MSW

reatment system is attractive to private investment. However, the

olicy-maker also requires that the performances of the AWTM

hould meet three following conditions: (1) To save MSW treat-

ent costs, Constraint (11) imposes an upper bound of total pay-

ent for using treatment service, i.e., �. (2) Based on environmen-

al sustainability targets, Constraint (12) implies that the ratio of

otal waste captured by STUs to that of the GTU should exceed a

esired lower bound �s / g . 3) Constraint (13) ensures the GTU’s

rofit should be at least above a reasonable lower bound 
g , so
hat the economic feasibility of the GTU is secured. Other con-

traints naturally limit the space of policy development. For the

egulator, more aspects can be considered and easily added to the

ptimization problem if necessary. 

In the simulation, we assume that � = 5 × 10 7 SGD, �s/g = 1 / 2 ,

nd 
g = 1 × 10 7 SGD. Due to the complexity of the AWTM and

ynamic feedbacks among agents, it is difficult to predict the ex-

erimental results. We adopt a genetic algorithm to search for the

ptimal mixed policy (m 

∗, β∗
s , η̄

∗
0 
, d ∗

0 
) , since this approach has been

idely applied for solving simulation-based optimization problems

see, e.g., Abdelghany, Abdelghany, Mahmassani, & Alhalabi, 2014 )

nd agent-based models (see, e.g., Zhao & Ma, 2016 ). After bal-

ncing solution optimality and computational efficiency, the pop-

lation size, maximum number of generations, probability of cross

ver and mutation are set to 50, 100, 0.5, 0.2, respectively. Fig. 5 is

he flow chart of the AWTM-nested genetic algorithm. 

. Results and discussion 

.1. Scenario S1 and S2 

Under Scenario S1, the STU count m increases from 2 to 8,

hich means that more STUs are licensed to enter the market.

able 4 and Fig. 6 demonstrate that, all STUs generally have to

ower their gate fees η̄s in response to fiercer peer competition.

oreover, as an individual, all STU’s key performance indicators

uch as the average profit 
s 
m 

, allocated waste �s 
m 

, and gained

reatment payment �s 
m 

are declining monotonically and signifi-

antly with the number of STUs. For example, the STU’s average

rofit drops drastically from 1.75 to 0.55 million SGD, a remarkable

8.57% decrease. These findings are fully consistent with the prac-

ice and classical economic conclusions about near-homogeneous

ompetition, revealing that the AWTM is a suitable agent-based

odel for studying the competitive MSW treatment market. In-

erestingly, as a group, the STUs’ total profit, waste, and service

ayment are steadily increasing. Facing the more competitive STU

roup, the GTU’s performances have sharply deteriorated, imply-

ng that the GTU is also a victim that suffers from a nearly per-

ectly competitive market. From the perspective of the individ-

al STU or the GTU, the only good news could be the dimin-

shed uncertainty during the agent’s decision-making process. In

ontrast, the regulator is able to easily save a total of 6.2 mil-

ion SGD to treat the generated food waste, an increasing portion

f which is treated by more environmentally friendly STUs (see

able 4 ). 

We now turn our attention to Scenario S2, where the regula-

or intervenes in waste allocation by indirectly changing the refuse

ollector’s preference to the STUs βs . Since the βg is fixed at 15, a

g > 15 represents that the regulator tends to forward more waste

o the STU than to the GTU under the same condition. Table 4 and

ig. 7 show that such intervention directly affects the waste vol-

me allocated to the treatment units. For the GTU, it has to signifi-

antly decline the gate fee ηg to compete for the waste. Even so, all

he GTU’s performances fall dramatically due to the increasing βs ,

.e., the refuse collector’s preference to the STUs. When βs = 19 ,

e find that the GTU’s gate fee ηg suddenly soars from previous

7.4 to 98. The reason for this phenomenon is that in the presence

f such high βs , the attractiveness of the GTU is insufficient for

aste competition, and almost no waste is allocated to the GTU.

n the other hand, in this case, the treatment of residues from

he STUs forms a substantial revenue stream for the GTU. There-

ore, the GTU tends to recover more revenues from post-treatment

f the residuals by increasing his own gate fee and thus give up

ompeting for the market share. Only in such extreme cases is the

TU’s gate fee ηg higher than the STUs’ average gate fee η̄s . For
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Fig. 5. The flow chart of the AWTM-nested genetic algorithm. In each generation, a child (i.e., a vector of decision variables) is created after parent selection, crossover and 

mutation. If the child satisfies the constraints of policy variables, the AWTM will be performed with them. If the simulation results of the AWTM satisfy the constraints of 

performances, the created child and its fitness (which should be sufficiently high) will be recorded for next generation. 

Table 4 

The means of the indicators under Scenarios S1 and S2. 

Scenario S1 with changing m Scenario S2 with changing βs 

Indicator 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 19 20 

η̄s (1e1) 7.90 7.78 7.70 7.65 7.60 7.55 7.52 7.48 7.56 7.60 7.65 7.65 7.65 7.59 7.50 7.36 7.56 7.55 

ηg (1e1) 6.28 5.99 5.63 5.44 5.26 5.07 4.96 9.15 7.95 7.12 6.56 6.18 5.44 4.72 4.14 3.74 9.80 10.00 


s (1e7) 0.35 0.40 0.40 0.42 0.42 0.43 0.44 0.09 0.10 0.13 0.20 0.33 0.42 0.50 0.61 0.71 0.48 0.46 


g (1e7) 3.23 2.88 2.67 2.52 2.37 2.25 2.16 5.61 5.03 4.39 3.78 3.12 2.52 1.89 1.32 0.84 1.02 1.04 

ū s (1e1) 0.34 0.19 0.12 0.08 0.06 0.04 0.03 0.00 0.00 0.01 0.02 0.05 0.08 0.11 0.14 0.18 0.27 0.33 

u g (1e1) 7.34 4.62 3.41 2.52 1.84 1.58 1.09 3.53 2.17 3.21 4.34 3.05 2.52 1.78 1.15 0.68 0.24 0.11 

�s (1e5) 2.42 2.84 2.87 2.98 3.12 3.17 3.26 1.44 1.10 1.23 1.67 2.54 2.98 3.67 4.61 5.78 7.84 7.89 

�g (1e5) 5.47 5.05 5.02 4.91 4.77 4.72 4.62 6.45 6.79 6.66 6.22 5.35 4.91 4.21 3.27 2.11 0.04 0.00 

�s (1e7) 1.87 2.15 2.15 2.22 2.29 2.31 2.36 1.04 0.80 0.90 1.23 1.89 2.22 2.69 3.32 4.10 5.78 5.81 

�g (1e7) 3.41 3.01 2.82 2.66 2.50 2.39 2.29 5.86 5.37 4.73 4.06 3.29 2.66 1.98 1.33 0.76 0.02 0.00 

� (1e7) 5.27 5.16 4.96 4.88 4.79 4.69 4.65 6.91 6.17 5.63 5.30 5.18 4.88 4.67 4.66 4.86 5.80 5.81 

R 2 s (1e-1) 4.80 5.80 6.50 7.60 7.70 8.30 8.10 5.90 5.20 6.20 7.10 8.00 7.60 7.00 7.30 7.30 6.00 6.10 

s 

m 
(1e6) 1.75 1.32 1.00 0.83 0.71 0.62 0.55 0.17 0.20 0.26 0.41 0.66 0.83 1.00 1.21 1.42 0.97 0.92 

�s 

m 
(1e5) 1.21 0.95 0.72 0.60 0.52 0.45 0.41 0.29 0.22 0.25 0.33 0.51 0.60 0.73 0.92 1.16 1.57 1.58 

�s 

m 
(1e6) 9.34 7.15 5.37 4.44 3.82 3.29 2.95 2.09 1.61 1.81 2.47 3.77 4.44 5.38 6.64 8.20 11.56 11.63 
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the regulator, excessive intervention by changing the βs not only

causes the GTU’s retaliatory gate fee increase, but also leads to the

STU’s greater uncertainty ū s and, more seriously, a rebounded total

payment for using waste treatment service �. These findings ob-

tained from Table 4 and Fig. 7 are interesting and helpful for the

regulator who attempts to promote the importance of the STUs un-

der competition. 

Besides, as mentioned in Section 4.2 , the indicator R 2 s measures

the strength of the linear relationship between STUs’ initial opera-

tion costs μ, residue generation coefficient δ and their profit π . For

the private STUs that have participated (or tend to participate) in

the competitive and integrated MSW treatment market, such infor-

mation is critical since both μ and δ are commonly associated with

strategic selections, such as determining the waste-to-energy tech-

nology and equipment. Under Scenario S1, the increasing R 2 s im-

plies that the intensified competition generally enhances the linear

relationship between cost reduction and profit. In other words, the

competing agents turn into the price takers and have to save cost

for more profit. Under Scenario S2, such relationship is relatively

strong when the attractiveness of the GTU is comparable to that of
 t  
he STU, i.e., 13 ≤ βs ≤ 18. If the GTU is a dominant player ( βs ≤
2) or an insignificant rival ( βs ≥ 19), R 2 s drops in these extreme

ases, possibly due to the soften waste allocation competition (see

able 4 and Fig. 7 ). 

In conclusion, the experimental results under Scenario S1 have

alidated the AWTM. It is found that individual treatment units in

ercer competition turn into the price takers and lose considerable

rofits. As a group, the STUs grabbed partial market share of the

TU. Besides, the STU, who has lower operation cost and generates

ess residues, is more likely to gain more profits. Under Scenario

2 with the regulator’s intervention in waste allocation, if the reg-

lator deliberately promotes the STUs by intervening in waste allo-

ation, the GTU could give up competing for the waste and greatly

ncrease its gate fee as retaliation. 

.2. Scenario G1 and G2 

The GTU is a key player in the AWTM not only because it is able

o treat both waste and residues, but also due to its monopoly in

he post-treatment market. Therefore, it is required to provide a
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Fig. 6. Experimental results under Scenario S1. All the horizontal axes are the STU count; the vertical axes are gate fee, profit, reduced chi-square value, allocated waste 

volume, treatment payment, and correlation coefficient, respectively (see Section 4.2 for indicator definitions and Table 1 for units). Scientific notations are used to provide 

better readability (e.g., 1e1 means × 10, and 1e7 means × 10 7 ). As the STU count increases from 2 to 8, all STU’s key performance indicators such as the gate fees, average 

profit, allocated waste, and gained treatment payment are declining monotonically and significantly. As a group, however, the STUs’ total profit, waste, and service payment 

are steadily increasing with STU count. Besides, the GTU’s performances are sharply deteriorating. 

Fig. 7. Experimental results under Scenario S2. See Fig. 6 for axes definitions. As the refuse collector’s preference to the STUs ( β s ) increases from 10 to 20, all the GTU’s 

performances fall dramatically. When βs = 19 , the GTU’s gate fee ηg suddenly soars from previous 37.4 to 98. 
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6  
iscount d 0 for treating the STUs’ residues and to set its gate fee

ithout exceeding the given limit η̄0 . 

Under Scenario G1, the GTU’s gate fee upper bound η̄0 is lin-

arly lifted from 20 to 180. However, Fig. 8 and Table 5 report

hat the GTU’s gate fee ηg increases in an irregular way: it equals

o η̄0 when η̄0 < 60 , remains at around 52 when 60 ≤ η̄0 ≤ 140 ,

nd finally climbs to 80.2 and 96.5 when the upper bound is 160

nd 180, respectively. The main reason for this result is that, given
he parameter settings in Table 3 , the GTU’s non-linear regression

unction (9) in the AWTM is similar to the curve illustrated in

ig. 9 . It is observed that there are three important points: local

aximum ηa , local minimum ηb , and ηc with Y (ηc ) = Y (ηa ) . 

Therefore, the GTU’s optimal gate fee η∗
0 

depends on which in-

erval the specific level of the upper bound η̄0 is in: (0, ηa ], ( ηa ,

c ), or [ ηc , ∞ ). Under Scenario G1, the ηa and ηc could be around

0 and 140, respectively. Therefore, when the η̄0 is sufficiently
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Fig. 8. Experimental results under Scenario G1. See Fig. 6 for axes definitions. As the upper bound increases from 20 to 180, the GTU’s gate fee increases in a irregular way. 

Table 5 

The means of the indicators under Scenario G1 and G2. 

Scenario G1 with changing η̄0 Scenario G2 with changing d 0 

Indicator 20 40 60 80 100 120 140 160 180 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

η̄s (1e1) 6.62 6.84 7.13 7.38 7.65 7.87 8.07 8.34 8.62 6.88 7.08 7.28 7.47 7.65 7.81 8.00 8.16 8.35 

ηg (1e1) 2.00 4.00 4.97 5.31 5.44 5.46 5.52 8.02 9.65 4.48 4.73 4.98 5.23 5.44 5.60 5.75 5.98 6.17 


s (1e7) 0.04 0.16 0.30 0.38 0.42 0.40 0.39 0.43 0.44 0.34 0.37 0.39 0.41 0.42 0.40 0.38 0.36 0.34 


g (1e7) 1.00 2.05 2.19 2.34 2.52 2.64 2.76 2.61 2.63 1.98 2.12 2.26 2.38 2.52 2.62 2.74 2.87 3.01 

ū s (1e1) 0.00 0.00 0.01 0.03 0.08 0.14 0.20 0.26 0.34 0.11 0.10 0.10 0.09 0.08 0.07 0.06 0.06 0.05 

u g (1e1) 0.00 0.16 1.08 1.95 2.52 3.16 3.59 3.74 3.04 1.31 1.54 1.66 1.91 2.52 3.23 3.84 4.55 4.83 

�s (1e5) 0.43 1.97 3.08 3.25 2.98 2.72 2.52 3.66 4.12 2.65 2.71 2.82 2.94 2.98 3.03 3.05 3.10 3.11 

�g (1e5) 7.46 5.91 4.80 4.63 4.91 5.16 5.37 4.23 3.77 5.23 5.17 5.07 4.94 4.91 4.86 4.84 4.78 4.78 

�s (1e7) 0.27 1.29 2.13 2.33 2.22 2.04 1.92 2.95 3.43 1.77 1.87 1.99 2.13 2.22 2.29 2.34 2.45 2.51 

�g (1e7) 1.49 2.36 2.34 2.45 2.66 2.82 2.96 2.38 2.16 2.35 2.45 2.52 2.59 2.66 2.70 2.75 2.78 2.84 

� (1e7) 1.76 3.66 4.47 4.79 4.88 4.86 4.89 5.34 5.60 4.11 4.31 4.51 4.72 4.88 4.98 5.08 5.22 5.36 

R 2 s (1e-1) 9.30 9.30 7.70 8.10 7.60 6.30 6.40 4.60 3.70 8.10 8.20 7.80 7.50 7.60 6.90 6.40 6.10 6.40 

Fig. 9. A sample curve of the GTU’s non-linear regression function (9) . 
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large, the GTU’s gate fee ηg approaches to the upper bound η̄0 with

the falling uncertainty. This finding reveals that, it is necessary

for the regulator to mandate a sensible upper bound on the gate

fee charge to prevent escalating costs of waste treatment. With-

out such upper bound, the optimal gate fee could tend to infinity.

On the other hand, the GTU might not necessarily always choose
he upper bound imposed as its optimal gate fee. In particular,

henever η̄0 ∈ (ηa , ηc ) , the operator prefers a lower gate fee ηa .

n the AWTM, however, the changing η̄0 still affects the GTU’s gate

ee decisions and other performances in a relatively slight man-

er, because of the varying gate fee intervals, randomness in its

stimation-and-optimization decision-making process, and conse-

uently different estimated price-profit curves. 

Under Scenario G2, the GTU also has its gate fee increased

ince the dictated discount for post-treatment d 0 is enlarged from

.1 to 0.9. Figs. 10 and 8 imply that the GTU’s performances

hare similar trends under two scenarios, such as higher gate fee,

rofit and uncertainty, and less waste allocated. The only difference

s, the changes of performance indicators under Scenario G2 are

ore smoothly in general. Unlike the GTU that owns two revenue

treams, the STUs have to maintain the relatively low service price

dvantage to capture more waste. Therefore, their pricing decisions

eem to be passive and conservative, and consequently other per-

ormances have much smaller variances than those of the GTU. 

To recap, driven by the increased gate fee of the GTU under

oth scenarios, the STUs conservatively raise their gate fee to a

esser extent and thus maintain profits. Under Scenario G1 and G2,

ence, cost reduction is less important compared with that under

cenario S1 and S2. Besides, the GTU is the major beneficiary and
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Fig. 10. Experimental results under Scenario G2. See Fig. 6 for axes definitions. As the discount factor for post-treatment increases from 0.1 to 0.9, the GTU obtains higher 

gate fee, profit and uncertainty, and less waste. The STUs have to maintain the relatively low service price advantage to capture more waste. 

Table 6 

Payment-saving policies based on experimental results. 

Policy & Corresponding scenario Impact on STU Impact on GTU Pros Cons 

P1. License more STUs High and negative Low and negative Easy to control and implement Low payment-saving 

(Scenario S1) 

P2. Allocate more waste to STUs High and positive High and negative 1. significant short-term effects 1, difficult to measure and determine 

(Scenario S2) 2. high waste utilization appropriate preference 

2, may cause extreme market situations 

P3. Impose lower gate fee bound Medium and negative Medium and negative 1. cost-effective to promote May seem to be noneffective in lessening 

to the GTU waste utilization the GTU’s gate fee sometimes 

(Scenario G1) 2. high payment-saving 

P4. Lessen the GTU’s gate fee Low and negative Low and negative Lowest side effects Low payment-saving 

discount for the STUs 

(Scenario G2) 
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d  
he regulator has to pay much more for waste treatment service in

he AWTM. 

.3. Managerial discussion for policy-makers 

We now attempt to shed some light on the competitive and in-

egrated MSW treatment market by discussing the managerial im-

lications of the experimental findings for policy-makers. 

Firstly, the above experimental results have identified the ef-

ects of each policy on the performances of the AWTM. To compare

hese four policies comprehensively, we first assume that the regu-

ator mainly focuses on the first objective (i.e., payment-saving) in

eveloping policies, and also consider the other secondary goals

isted in Section 4.3 . Based on this assumption, four new poli-

ies are proposed for saving treatment payment, as summarized

n Table 6 and represented by P1–P4, respectively. The degree and

roperty of the impacts on treatment units are evaluated according

o the variances of their performances. The pros and cons of the

olicies come from the other concerns of the regulator. According

o Table 6 , the third policy P3, imposing lower gate fee bound to

he GTU, is the best one due to the following reasons: (1) It is able

o obtain the largest payment saving; (2) Unlike the second policy,

t can significantly promote waste utilization without paying more
o the operators; (3) The medium impacts on the treatment units

ould be acceptable. 

Secondly, we consider that the policy-maker seeks to develop

 mixed policy to better regulate the competitive MSW treatment

arket. As stated in Section 4.3 , we employed a genetic algorithm

o identify the optimal mixed policy for the regulator, who is as-

umed to fulfill multiple predefined objectives. In that case, the fi-

al best solution is m 

∗ = 2 , β∗
s = 16 . 97 , η̄∗

0 
= 81 . 58 , and d ∗

0 
= 0 . 22 ,

nd each one STU can receive at least SGD 3.8 million profit un-

er this mixed policy and other given constraints. Although the GA

pent more than 5.5 hours to reaching the 100th generation, the

ptimal solution first appeared in the 29th generation within two

ours and was always the best one of the candidates till termi-

ation, revealing that this approach has a high convergence rate.

herefore, the genetic algorithm has a good potential to solve sim-

lar simulation-based policy-development problems. 

Finally, it is worthwhile to recommend the agent-based tech-

ique to policy-makers as a viable approach to develop and eval-

ate policies. In this paper, we provide a promising framework of

ndividual modeling about the decision-making process of agents

i.e., stakeholders) in competition. Due to the valuable flexibility

f the framework, large-scale and more realistic studies, which are

ften cumbersome to model and solve mathematically, can be con-

ucted in a natural and bottom-up way. Therefore, our findings,
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which emerge from micro interactions among agents in the AWTM,

are able to generate managerial insights that help the regulator to

develop appropriate policies for managing the competitive and in-

tegrated municipal solid waste treatment market. 

6. Conclusions 

In this paper we propose an agent-based waste treatment

model (AWTM) to investigate competition among private self-

interested operators in integrated municipal solid waste treatment

markets. The AWTM consists of four types of agents: (1) one refuse

collector which forwards the input waste to the operators accord-

ing to their gate fee attractiveness and the refuse collector’s prefer-

ences to them; (2) multiple specialized treatment units (STUs) that

are able to treat specific input waste and earn revenue by charg-

ing a per-tonne gate fee. However, the residues generated from

the waste-to-energy process require further processing before fi-

nal disposal; (3) one general treatment unit (GTU) which can treat

both input waste and the STUs’ residues; (4) an abstract regula-

tor, who has developed four policies by changing the initial val-

ues of different exogenous variables. We design an estimation-and-

optimization approach for the private operators so that they can

optimize gate fee decisions in response to low-information compe-

tition. Moreover, to help the regulator identify the optimal mixed

policy and fulfill multiple predefined objectives, the AWTM is in-

tegrated into a simulation-based optimization problem, which is

solved by a genetic algorithm. 

We conclude our findings based on the simulation outputs of

33 experiments under four scenarios as follows. (1) In a nearly

perfectly competitive market, individual treatment units turn into

the price takers and lose considerable profits. As a group, the STUs

grabbed partial market share of the GTU when more STUs are li-

censed to enter the market. (2) If the regulator deliberately pro-

motes the STUs by intervening in waste allocation, the GTU could

give up competing for the waste and greatly increase its gate fee

as retaliation. (3) Driven by the increasing gate fee of the GTU,

the STUs conservatively raise their gate fee to a lesser extent and

thus maintain profits. (4) In case of higher gate fee upper bound

or large gate fee discount for the STUs, the GTU will be the ma-

jor beneficiary and the regulator will have to pay much more for

waste treatment service in the AWTM. Based on the above mean-

ingful findings, we further propose four policies for the payment-

saving regulator, and discuss the impacts, pros and cons of these

policies comprehensively. Finally, the optimal mixed policy is ob-

tained for the policy-maker who has multiple predefined objec-

tives, revealing that the AWTM can be extended to be a powerful

decision support approach for policy development. 

This paper provides an application of the complex adaptive sys-

tem (CAS) theory in the MSW treatment system. Adopting the CAS

perspective to model the optimal responses of agents in competi-

tion in a bottom-up way, we construct the AWTM to investigate

the optimal gate fee decisions of private self-interested operators.

From an academic standpoint, our approach provides a promis-

ing framework to study competition in integrated municipal solid

waste treatment markets under low information (e.g., the agent

has little knowledge about its peers and the environment). Based

on more realistic modeling of the optimal behaviors of treatment

units, our findings generate valuable managerial insights for the

market regulator in developing and evaluating policies. Therefore,

the enhanced agent-based modeling technique is a viable method-

ology for managerial research. 

We suggest several directions for future research. First, the

treatment unit’s capacity, location, and other attributes neglected

in our model can be taken into account in an extended version of

the AWTM, which would make agents’ behaviors much more real-

istic. Second, suppose that the policy-maker attempts to affect the
arket by selectively disclosing some private information. It could

e interesting to examine if this attempt can succeed. Finally, since

ur approach is a general framework, we consider exploring its ap-

lications in studying competition and/or corporation in other in-

egrated systems. 
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ppendix A. List of abbreviations and definitions 

Term Meaning/definition in the paper First 

appearance 

ABM(s) Agent-based model(s) Section 1 

AWTM Agent-based waste treatment model Section 1 

Black-box The situation that decision makers have no 

knowledge of what results can be 

obtained 

Section 3.3 

CAS Complex adaptive system Section 1 

CBA Cost-benefit analysis Section 2.1 

DV(s) Decision variable(s) Table 1 

GTU General treatment unit who can treat any 

waste stream via incineration 

Section 1 

LCA Life-cycle assessment Section 2.1 

MCDA Multi-criteria decision analysis Section 2.1 

MLDM Multinomial logit demand model Section 3.2 

MSW Municipal solid waste Section 1 

NV(s) Endogenous variable(s) Table 1 

Refuse collector The agent who represents the waste 

collection and distribution function 

Section 3.2 

Regulator The government agency who manages the 

waste treatment system 

Section 1 

STU Specialized treatment unit who can only 

treat specific types of waste 

Section 1 

WEEE Waste electrical and electronic equipment Section 2.2 

XV(s) Exogenous variable(s) Table 1 
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