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a b s t r a c t 

Container transportation has developed rapidly in recent years because of the growth of international 

trade. However, transportation demands along shipping lanes or in different regions are unbalanced 

and change over time. This high-growth and uncertain operation environment makes empty container- 

capacity management important and challenging. Carriers usually face two types of demands from for- 

warders/shippers with long-term contracts and from the spot market. Empty container-capacity planning 

and allocation are based on demand information from forwarders and the spot market. In this paper, we 

focus on the empty container-quantity decision problem over one planning horizon of multiple sched- 

ules, each with a random demand. The carrier builds empty container capacity with its own containers 

and leased containers. We construct a stochastic dynamic program model to maximize the profit of the 

carrier. The objective function is shown to be concave in empty container quantity. We can also formu- 

late a static model and a myopic model. We run simulations by assuming that demand follow colored 

and white Gaussian Noise processes, we observe that the optimal empty container quantity using the 

static model is identical or close to identical to that from the dynamic model, while the optimal empty 

container quantity from the myopic model is always more than that from the dynamic model. Therefore, 

a simplified iteration algorithm utilizing the static and myopic models is developed to obtain the optimal 

dynamic solution efficiently. Numerical experiments show that the proposed algorithm is effective. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The uncertain demands, long facility-preparation time, high set-

up costs, and rapidly changing market characterize the challeng-

ing operating environment for container carriers. Usually, a car-

rier leases a certain number of empty containers from container-

leasing companies in addition to the containers it owns. In this

challenging market environment, empty container management

becomes one of the key areas affecting the competitiveness and

profitability of the carrier. 

Forwarders are closer to the market in shipping supply chains

and possess private information on the shippers. Usually, a large

proportion of the demand of a carrier is realized via forwarders

(and directly with large shippers) based on long-term contracts,

which come with high penalty costs when contract targets are not

met. The remaining demand comes from the spot market, where

orders are settled instantly at current market price. Since demands
∗ Corresponding author. 
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n spot market do not follow a set date, the spot market is also

eferred to as the ‘cash market’. Huge of resources and efforts are

ayed to respond to uncertain instant demand from spot market,

he corresponding price towards demand from spot market is rel-

tively high. Although the spot market demand fluctuates consid-

rably and creates volatility risk, it is usually quantity-limited than

he contract demand. Therefore, carriers usually prioritize and sat-

sfy contract demands first. Considering the high set-up cost and

he relatively long lead-time, carriers should carefully plan empty

ontainer capacity for a shipping schedule before demand realiza-

ion. Given the fixed number of self-owned empty containers, the

mpty container-capacity plan should focus on determining the

umber of empty containers to be leased from container-leasing

ompanies. 

In this paper, we consider a system with one carrier and two

ypes of demands from forwarders (and large shippers) by con-

racts and from the spot market, or DF and DS, respectively. The

arrier decides on the quantity of leased empty containers at the

tart of the shipping schedule. The shipping schedule can be di-

ided into T schedules. In each schedule, both DS and DF are ran-

om, independent, and follow some stochastic distributions. The

https://doi.org/10.1016/j.chaos.2018.06.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2018.06.019&domain=pdf
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arrier allocates empty containers to DS and DF at the start of each

chedule in the shipping schedule. The planning processes include

wo stages, namely, the empty container-capacity preparation and

he allocation. In the first stage, the carrier determines the total

mpty container capacity. In the second stage, the carrier allocates

he containers to DS and DF in T schedules. The objective is to

etermine the optimal empty container quantity to maximize the

arrier’s total profits. 

As the shipping networks become increasingly complex, the

roblem of the empty container assignment has become more

roublesome. Several studies focus on empty container-preparation

nd assignment problems. Dejax and Crainic [1] provide a com-

rehensive review on the works dedicated to the container trans-

ortation aspects of the problem. Cheung and Chen [2] present a

wo-stage stochastic network model for dynamic empty container

llocation and repositioning over time and among ports along a

hipping lane, while assuming unlimited availability of leased con-

ainers at every port. Li et al. [3,4] propose a policy of controlling

he quantity of company-owned and leased containers for a single

ort, and extend their model by introducing empty container repo-

itioning and allocation for multi-ports. Allocation problem was

ormulated and heuristic methods were designed according to the

verage cost using the ( u, d ) policy at one port. Francesco et al.

5] study a container maritime-repositioning problem where sev-

ral parameters were uncertain and historical data could not be

sed for decision-making process. Most of the above works fo-

us on the internal resource optimization of the carrier and does

ot consider the external coordination of the empty container-

ssignment problem. We devote ourselves to the container as-

ignment problem of the carrier in the container shipping service

hain, which includes one upstream rental company, one carrier,

ne forwarder, and the spot market. 

Some researchers have studied the external coordination be-

ween participants in the container shipping service chain to op-

imize empty container quantity. Caplice [6] discusses the request-

or-proposal procurement process for transportation services. He

elieves that the predominant form of commercial relationship

etween shippers and carriers has changed from a transactional

asis to a contractual one. Schönberger [7] constructs a model

or collaboration among transportation companies and provides a

emetic algorithm to solve the problem. Bu et al. [8] analyze the

ontract decision problem of the marine shipping capacity option,

nd establish an optimal decision model of the carriers and the

orwarders for shipping capacity contract with empty container-

epositioning cost. 

To summarize, the related existing research can be divided into

wo streams, namely, the allocation plans and the coordination be-

ween participants to optimize the container capacity. No research

as been made on the integration of empty container-preparation

nd allocation decisions. In addition, the existing study mainly

onsiders demands from one source (the forwarder or the ship-

ing market). In this paper, we consider the demands from both

orwarders and the spot market. The contributions of this paper

an be summarized as follows. First, this paper studies a realis-

ic integrated container preparation and allocation problem with

wo types of random demands and multi-allocation schedules. Sec-

nd, this paper models the problem by using a stochastic dynamic

ethod, and develops a simplified algorithm to reduce the compu-

ational burden. 

The rest of the paper is organized as follows. Section 2 de-

cribes the basic model of a stochastic dynamic programming

odel. Section 3 shows the proof that the objective function is

oncave in the optimal rented empty container quantity, presents

he available allocation framework, and shows that the dynamic

llocation policy is the optimal policy for allocating empty con-

ainers. Section 4 presents an effective iterative algorithm designed
o solve the proposed stochastic dynamic programming model and

hows a numerical example. Section 5 concludes the paper. 

. The model 

The shipping system includes one carrier, one forwarder, and

 spot market. Two streams of demands, the DF and the DS, are

vailable. To satisfy the demands, the carrier has to decide the

umber of empty containers available for each demand stream at

he start of a shipping schedule. In the container shipping industry,

arriers often lease most of their containers from leasing compa-

ies. A leasing schedule usually lasts from three to six months. For

ach leasing schedule, the carrier schedules several shipments for

he leased containers such that the leasing schedule can be divided

nto a number of schedules with each corresponding to a ship-

ent voyage. In this paper, we focus on one leasing schedule with

ultiple shipping schedules. We assume that the carrier makes its

ecision in two stages. Fig. 1 shows the empty container-capacity

reparation stage or stage 1, and the allocation stage is stage 2.

n stage 1, the carrier decides on the total number of empty con-

ainers available for the leasing schedule. In stage 2, the carrier

llocates dynamically the empty containers to the two types of de-

ands in each of the T schedules. In each schedule, the DF and the

S are random and independent of each other and follow some

tochastic distributions. In addition, we assume that one leasing

chedule contains a number of voyages. The first voyage returns to

he originating port at the end of the leasing schedule; thus, no

mpty containers can be brought back by the voyages in this leas-

ng schedule. The objective is to maximize the total profit of the

arrier by deciding the optimal empty container quantity at the

eginning of the leasing schedule and the optimal dynamic alloca-

ion policy. Table 1 lists the notations we use in this paper. 

This study adopts the following assumptions: 

ssumption 1. The demands from the spot market and the forwarder

n each schedule are random with known probability density function.

ssumption 2. The capacity salvage value is zero, and all unsatisfied

emands are lost. 

The carrier initially owns K 0 empty containers. The number of

ented empty containers from the leasing market is denoted by Q 0 .

Stage 1. Empty container-capacity decision stage 

The number of leased empty containers Q 0 is determined. The

easing cost of each unit is c 0 for the whole leasing schedule. The

otal number of empty containers available for the leasing sched-

le is Q = Q 0 + K 0 . In industry practice, a carrier first satisfies the

emands from its downward forwarders under long-term contracts

nd then allocates a quantity of empty containers to the spot mar-

et. 

Stage 2. Container allocation stage 

This stage consists of T schedules. Demands d t = (d t 
F 
, d t 

S 
) from

he spot market and the forwarder at schedule t are observed at

he beginning of t . Let X 

t be the number of available empty con-

ainers at the beginning of schedule t . Hence, X 1 = Q . Let N 

t be

he difference between the available empty containers x t and the

ctual demands d t 
F 

in the current schedule, that is, N 

t = ( x t − d t 
F 
) . 

N 

t can either be positive, negative, or zero. The allocation deci-

ions made in schedule t are based on both N 

t and the demands

n the next schedules. Considering that the demand from the spot

arket d t 
S 

≥ 0 must be realized, the carrier can decide the quan-

ity of the demand to be satisfied. Let the allocated quantity be y t 
S 
,

hich is positive and within the current capacity of the available

mpty containers. 

 ≤ y t S ≤ min ( ( N 

t ) + , d t S ) . 

The carrier decides on the allocation at the beginning of each

chedule after the demands are realized. The excess empty con-
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Fig. 1. Two stages of the whole time horizon. 

Table 1 

Notations. 

T Total schedules in the container allocation stage 

K 0 Quantity of carrier-owned empty containers 

Q 0 Quantity of empty containers rented by the carrier from the leasing market 

Q Total number of empty containers available for the whole leasing schedule; thus, Q = K 0 + Q 0 
c 0 Rental cost of each empty container 

D t Demands for empty containers at schedule t , D t = { D t S , D t F } . The realized values are d t = { d t S , d t F } , where d t F is the 

realized DF at schedule t and d t S is the realized DS at schedule t 

Y t Allocated empty containers at schedule t. The realized values are y t S (containers allocated to the spot market) and y t F 
(containers allocated to the forwarder) 

X t Available empty containers at the start of schedule t. The realized value is x t 

N t Difference between the actual demands d t F and available empty containers x t at the current schedule, that is, 

N t = ( x t − d t F ) 

p F Unit price of empty containers sold to the forwarder 

p S Unit price of empty containers sold to the spot market 

v F Penalty cost when one DF unit is not fulfilled 

v S Penalty cost when one DS unit is not fulfilled 

u F Processing cost of satisfying one DF unit 

u S Processing cost of satisfying one DS unit 

w Shipping cost of each container 

αF Contribution margin from satisfying one DF unit 

αS Contribution margin from satisfying one DS unit 

ᾱS Contribution margin of empty containers when some empty containers are reserved for the next schedule 

�( Q 0 ) Total profit of the carrier for the whole service time horizon 

�t ( X t ) Total profit in T − t + 1 schedules (from schedule t to schedule T ) 

H t ( Y t / D t ) 

Revenue at schedule t 

Q M∗
0 Optimal quantity of prepared empty containers using the dynamic policy 

Q M∗
0 Optimal quantity of prepared empty containers using the myopic allocation policy 

Q S∗
0 Optimal quantity of prepared empty containers using the static policy 
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tainer capacity at the end of schedule T has no salvage value.

Therefore, the cost for the time horizon contains two parts, which

are the container leasing cost and the penalty cost from the un-

satisfied demand. The revenue comes in the allocation stage. Let

�( Q 0 ) be the profit function for the whole leasing schedule. Our

objective is to find the optimal leased empty container quantity Q 0 

and allocations for the T schedules to maximize this profit func-

tion. We formulate this problem as a dynamic program with T + 1

steps. In the empty container-preparation stage, the carrier deter-

mines the optimal rented container quantity, whereas in schedules

1 through T , the carrier allocates its empty containers to maximize

its revenue. Let p F denote the price of satisfying one DF unit and

v F denote the unit penalty cost when one DF unit is not fulfilled.

Let u denote the processing cost (search for the demand, activities
F 
n the order, and so on) for each DF, and u S be the processing cost

or each DS. The processing cost of each DF is smaller than that of

ach DS because of the closer relationship between the carrier and

he forwarder and a bigger volume, which is, 

 F ≤ u S (1)

Let αF be the contribution margin for satisfying a DF unit, and

et αS be the contribution margin for satisfying a DS unit. Let w

e the shipping cost for each container. Clearly, the contribution

argins are αF = p F + v F − u F − w and αS = p S + v S − u S − w . p F +
 F and p S + v S represent the carrier revenue from satisfying one

nit each of DF and DS, respectively. v F > v S due to the relatively

igger punishment for an unsatisfied DF. The contribution margin
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f one satisfied DF is more than that of DS, that is, αF > αS (for

xample, see [10] ). 

As commonly practiced in the shipping industry, we assume

hat the carrier satisfies first the demands of the forwarder. The

emaining empty containers are then used to satisfy the demands

f the spot market. In addition, a discounted price is applied to

he demands of the forwarders, which is a common practice in the

hipping industry. Thus, the following relationships hold: 

 F ≤ u S , v F > v S , p F < p S , αF > αS (2)

The dynamic model can now be formulated as follows: 

Stage 1 : Leased empty container-quantity decision stage 

( Q 0 ) = max 
Q 0 

{ �1 ( X 

1 ) − c 0 Q 0 } (3)

here 

 

1 = Q 0 + K 0 (4) 

Stage 2 : Allocation stage (1 ≤ t ≤ T ) 

t ( X 

t ) = E 
D t 

{ 

max 
Y t + X t+1 = X t 

[ H 

t ( Y t / D 

t ) + �t+1 ( X 

t+1 )] 

} 

(5) 

 

t ( Y t / D 

t ) = max 
y t 

F 
,y t 

S 

[ αF y 
t 
F + αS y 

t 
S − v F d t F − v S d t S ] (6)

.t. y t S ≤ d t S (7) 

 

t 
F ≤ d t F (8) 

 

t 
F + y t S ≤ X 

t (9) 

 

t 
F , y 

t 
S , Y 

t , X 

t+1 , Q 0 ∈ R 

+ (10)

�t ( X 

t ) at the left-hand side of Eq. (5) denotes the total profit of

he T − t + 1 schedules (from schedule t to schedule T ) given avail-

ble empty container X 

t . Similarly, �1 ( X 

1 ) in Eq. (3) is the total

rofit of the entire allocation stage. Thus, Eq. (3) maximizes the

otal profit for the whole leasing schedule, that is, the total profit

n the allocation stage minus the cost in the empty container-

reparation stage. �T +1 ( X T +1 ) is equal to zero because the salvage

alue is zero. Eq. (4) describes the total empty containers at the

eginning of the allocation stage. Y t denotes the number of avail-

ble empty containers allocated in schedule t . Thus, Y t + X t+1 = X t 

nsures that the sum of the containers used in schedule t and the

ontainers held over for the next schedule is equal to the number

f available containers at the beginning of schedule t . Eq. (5) states

hat �t ( X 

t ) is the sum of the profit in schedule t and the profit ob-

ained in the next schedules. y t 
S 

and y t 
F 

are the satisfied DS and DF,

espectively. H 

t ( Y t / D 

t ) in Eq. (6) is the profit for a single schedule t ,

iven realized demand D 

t = (d t 
N 
, d t 

S 
) . Eqs. (7) to (9) are the demand

onstraints at schedule t . Eq. (10) shows that variables y t 
i, j 

, Y t , X t+1 ,

nd Q 0 are positive numbers. The revenue at schedule T + 1 and

he future schedules are zero, that is, �T +1 ( X T +1 ) = 0 because the

mpty containers have no salvage value. As the �1 ( X 

1 ) value is the

ccumulative value from schedule T to schedule 1, the computation

f �1 ( X 

1 ) creates a dynamic stochastic programming model with T

teps. 

. Model analysis 

The allocation decision depends not only on the demand and

he available empty container in the current schedule, but also

n the demands in future schedules. Future demands are uncer-

ain and are independent of each other; thus, the dynamic model

( Q ) is a ( T + 1)-step stochastic dynamic programming model. 
0 
emma 1. �( Q 0 ) is concave in Q 0 . 

roof. �T +1 ( X T +1 ) = 0 because αF > αS and the salvage value is

ero. From Eq. (5) , we have 

T ( X 

T ) = E 
D T 

{ max [ H 

T ( X 

T / D 

T )] } (11)

.t. y T S ≤ d T S , y 
T 
F ≤ d T F (12)

 

T 
F + y T S ≤ X 

T (13) 

 

T 
F , y 

T 
S , X 

T ∈ R 

+ . (14)

Eq. (6) shows that H 

T ( Y T / D 

T ) is concave in X 

T . Therefore, �T ( X 

T )

s concave in X 

T because expectation preserves concavity (Van

lyke and Wets [9] ). 

Now, we assume that �t+1 ( X t+1 ) is concave in X t+1 . Obviously,

 

t = (y t 
F 
, y t 

S 
) determines the right-hand-side of the constraints in

 

t ( Y t / D 

t ). Thus, function H 

t ( Y t / D 

t ) is concave in Y t . The relationship

 

t + X t+1 = X t reveals that �t ( X 

t ) is concave in X 

t , which is the

aximum value of the sum of two concave functions. 

The above analysis shows that �1 ( X 

1 ) is concave in X 

1 . X 1 =
 0 + K 0 is a positive linear function in Q 0 . Thus, �1 ( X 

1 ) is concave

n Q 0 . Obviously, −c 0 Q 0 is a linear function in Q 0 ; thus, �( Q 0 ) =
1 ( X 1 ) − c 0 Q 0 must be concave. Q.E.D. 

The contribution margins for satisfying one unit each of DF

nd DS are αF = p F + v F − u F and αS = p S + v S − u S , respectively. In

F > αS (See Eq. (2) ), the carrier first satisfies the DF before satis-

ying the DS. Therefore, the allocation solutions at schedule t are

 

t 
F = min (d t F , X 

t ) , 0 ≤ y t S ≤ min (( X 

t − y t F ) , | N 

t | ) (15)

Next, we assume that the optimal container quantity allocated

o DS at schedule t is y t 
S 
, and the contribution margin of the last

nit container allocated to DS is αS . However, if some empty con-

ainers are reserved for the next schedule, the contribution margin

f the empty containers is 

¯ S (y t S ) = �t+1 ( X 

t+1 + 1) − �t+1 ( X 

t+1 ) 

= �t+1 ( X 

t − y t F − y t S + 1) − �t+1 ( X 

t − y t F − y t S ) . (16) 

here X 

t ≥ 0 

While the reserved empty containers are allocated to the DF or

S in future schedules, they may not be allocated (in the worst

ase scenario) in future schedules due to smaller-than-expected

emands in the future schedules. Thus, 0 ≤ ᾱS (y t 
S 
) ≤ αF . 

Because �t+1 ( X t+1 ) is concave in X t+1 (See Lemma 1 ), ᾱS (y t 
S 
)

ncreases in X t . Given that α
S 

is a constant parameter, the optimal

ontainer quantity allocated to DS is the maximum of all possible

 

t 
S 

values that satisfies ᾱS (y t 
S 
) ≤ αS . However, if no y t 

S 
value satisfies

he inequality ᾱS ≤ α
S 
, the marginal profit for satisfying the DS is

lways less than that of reserving the container for the next sched-

le. Therefore, the optimal allocated container to the spot market

s zero. In short, the optimal allocated quantity is summarized as

 

t∗
S = 

{
max (y t S ) , i f ᾱS (y t S ) ≤ αS 

0 , else. 
(17) 

emarks. Influences of noise and interconversion in demand to prob-

em formulation and allocation policy. 

Both Eqs. (15 –17 ) suggest the optimal empty container alloca-

ion policies respecting to the demands from spot market and for-

arders. In detail, allocate as more as possible to the demand from

orwarders, and allocate the most appropriate amount of empty

ontainers to spot market basing on a deterministic process. We

o not emphasize the relations between the DF demand and DS

emand when we buildup the decision model by dynamic model
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(specified by Eqs. 3 –10 ) and come up to the allocation policies.

Specifically, demand may follow different sorts of stochastic pro-

cesses over time, like white or colored noise of demands, the in-

terconversion of DF demand and DS demand. One essential ques-

tion to answer is whether the model and allocation policy robust

to stochastics of demands. We answer the questions in the follow-

ing two aspects. 

First, we examine the influence of stochastics of demand to

problem formulation. Since the decision maker determines its ca-

pacity of empty container and its allocation quantity in different

time schedule, the decision problem follows a stochastic dynamic

process, which is thereby formulated as a stochastic dynamic pro-

gramming. In other words, the dynamic program suggests a step-

by-step decision processes, the optimal decision is made based

on the realized demand in current schedule and the unrealized

demand with given distribution in forthcoming schedules. Since

the demand distribution is able to be known under different cir-

cumstances, e.g., noise in demand or alternativeness between two

types of demand, the formulated model still holds and is robust

with different shapes of demands. 

Second, the robust of allocation policy. Because the contribution

margin of satisfying DF demand is always than that of satisfying

DS demand in current schedule and demand in upcoming sched-

ule, the optimal allocation policy is allocating as more as empty

containers to satisfy DF demand. Obviously, how much empty con-

tainer to allocate is determined by the realized value of DF de-

mand, where DF demand follows a probability density function.

Meanwhile, we compare the contribution margin of satisfying DF

demand on current schedule and of that when reserve the empty

container to next schedules, where the contribution margin of re-

served empty container is determined based on the DF and DS de-

mands with known distributions. Thus, Eq. 17 specifies the alloca-

tion decision to satisfy DS demand and works for different known

distributions of DF and DS demands. 

Since the dynamic programming model and allocation policies

work for demands with all kinds of shapes, the shape factors, e.g.,

noise of uncertain demand as well as interconversion in demands,

does not affect the forms of the model and empty container allo-

cation policies. 

4. Simplified algorithm 

Demands are realized over schedules, and the allocation deci-

sions should be made at the beginning of each schedule. Consid-

ering that the profit from satisfying the DS is lower than satisfy-

ing the DF, the decision of satisfying the DF at each schedule is

made not only based on the current demand but also on future

demands (DF and DS), that is, the DS in the current schedule will

not necessarily be fully satisfied. The allocation rule that considers

the future demand is called dynamic policy, and the corresponding

model (see Eq. (3) ) is called the dynamic model. 

To obtain the optimal solution of the dynamic model, the al-

location strategy should be based on Eq. (17) . Therefore, the al-

location decisions in each schedule are made not only based on

the current available empty containers and demand, but also on

the demands in the future schedules. Whereas Eq. (17) gives the

optimal allocation policy, the calculations for the optimal allo-

cated quantities are burdensome due to the unrealized demands

in Eq. (17) . 

The optimal number of leased containers can be searched nu-

merically by iteration because the profit of the carrier is concave

in the quantity of leased containers. If the optimal leased empty

container quantity is Q in iteration step w , at least 2 + Q / w times

the stochastic dynamic programming should be calculated. Thus,

searching for the optimal quantity of the leased container repre-

sents a significant computational burden. The situation worsens
hen the number of schedules increases. In this section, we de-

elop a new iterative search method to speed up the search for

he optimal empty container quantity. 

.1. Model comparisons 

Two other simpler allocation policies available are myopic and

tatic. Future demands are not considered in the allocation in the

urrent schedule under the myopic policy. If we assume N 

t > 0, the

atisfied DS is y D _ t 
S 

, and the satisfied DS using the myopic policy

s y M _ t 
S 

= min ( N 

t , d t 
S 
) . Obviously, the satisfied DS from the myopic

olicy is more than the result of the dynamic policy. 

Determining the optimal allocation decisions is difficult be-

ause demands that arrive in each future schedule are unknown.

owever, if all demands are known before the allocation stage,

he problem will become an optimal empty container-allocation

roblem with perfect information. The optimal empty container-

apacity allocation model with perfect information (called the

tatic model) is described as follows: 

Empty container-preparation stage: 

S (Q 

S 
0 ) = max 

Q S 
0 

{ �S _ 1 ( X 

S _ 1 ) − c 0 Q 

S 
0 } (18)

 

S _ 1 = Q 

S 
0 + K 

S 
0 (19)

llocation stage (1 ≤ t ≤ T ): 

S _ 1 ( X 

S _ 1 ) = max 
y S _ t 

S 
,y S _ t 

F 

E 
d t 

S 
,d t 

F 

( ∑ 

t 

αF y 
S _ t 
F + 

∑ 

t 

αS y 
S _ t 
S −

∑ 

S 

v S d t S 

−
∑ 

F 

v F d t F 

) 

(20)

.t. y S _ t S ≤ d t S , y 
S _ t 
F ≤ d t F (21)

 

S _ t 
F + y S _ t S ≤ X 

S _ t , y S _ t S + y S _ t F + X 

S _ t+1 = X 

S _ t (22)

 

S _ t 
F , y S _ t S , Y S _ t , X 

S _ t+1 , Q 

S 
0 ∈ R 

+ 

�S (Q 

S 
0 
) in Eq. (18) includes two parts: the total profit in the al-

ocation stage and the total cost when the carrier rents the con-

ainers. As all demands are realized at the beginning of the al-

ocation stage, the allocation problem can be transformed into a

ingle-schedule decision-making model. Let y S _ t 
S 

and y S _ t 
F 

be the

mpty container allocation for demands, d t 
S 

and d t 
F 

, respectively,

t schedule t. Eq. (20) is the total profit obtained at the whole

mpty container-allocation stage. Eqs. (21) and (22) are the de-

and and supply constraints, respectively. y S _ t 
F 

, y S _ t 
S 

, Y S _ t , X S _ t+1 and

 

S 
0 

are non-negative numbers. 

The satisfied demand by the myopic allocation policy is at least

s many as that by the dynamic allocation policy from Eq. (15) .

uture demand information is not needed by the static allocation

olicy. Hence, fewer calculations are needed for the static allo-

ation policy than that for the dynamic allocation policy. Obvi-

usly, the dynamic policy is more profitable than the myopic pol-

cy ( Appendix 1 ). This conclusion is critical for the search of a

imulation-based allocation policy. 

Once a certain empty container capacity is given, the satisfied

F quantities both by the myopic and dynamic policies are not al-

ays the same, and the dynamic allocation policy is more prof-

table than the myopic allocation policy. We designed a simulation-

ased experiment to test the quantity difference by using the two

llocation policies, and important observations are drawn. 

bservation 1. The optimal quantity of the empty containers under

he dynamic policy is not more than the myopic policy. 
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Fig. 2. Optimal empty container quantity by different allocation policies. 
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3  
bservation 2. The optimal quantity of empty containers under the

ynamic policy is almost identical to the static policy. 

The analysis of the model shows that the dynamic policy is

ore profitable than the myopic policy because of better flexibil-

ty. Let Q 

D ∗
0 be the optimal empty container quantity under the

ynamic policy and Q 

M∗
0 

and Q 

S∗
0 

be the optimal empty container

uantities under the myopic and static allocation policies, respec-

ively. In the following context, two experiments using the design

f experiment (DOE) method is adopted to demonstrate the theo-

etical analysis results of Observations 1 and 2. 

Design of Experiments 

In many industrial practices, demands are dependent over time.

or example, in shipping market, demands for transportation have

easonality pattern, demand for empty container grows in sell-

ng season but decreases in after the selling season [14] . As well,

emand from different resources has its internal characteristics

hich is alterable over time. In container freight market, the con-

umers’ demand from spot market (i.e., DS demand) turns into

he demand from the forwarder market (i.e., DF demand) when

he he/she employ a forwarder to deal with his/her demands for

mpty container. Similarly, when a consumer does not rely on

he forwarders’ service and trade instantly with freight company,

he DF demand transfers to DS demand. The variation of DF de-

and �d i 
F 

and DS demand �d i 
S 

because of transformation of de-

and is able to be calculated by a simple mathematical formula,

D 

i 
F 

= −αd i 
F 

+ βd i 
S 

and �D 

i 
S 

= αd i 
F 

− βd i 
S 
, where α and β are con-

tant coefficients representing the proportion of transferred de-

ands. Thus, α and β are ranges in [0,1]. When a coefficient equals

o zero, the type of demand does not transfer to the other. On con-

rary, if a coefficient equals to 1, all of the type of demand transfers

o the other type. 

In container transportation industry, demand for empty con-

ainer always time-dependent. For example, according to data from

rewry, the third quarter of the year is traditionally the busiest for

he container shipping industry as retailers stock up for the holiday

eason [15] . Since demands in different schedule are time-oriented,

e assume that both DF demand and DS demand follow colored

aussian noise processes in the experiment. Thus, we let X i 
F 

and Y i 
S 

re variables follows random distributions, we have d i +1 
F 

= ε+ ∈ X i 
F 

nd d i +1 
S 

= θ + ϑY i 
S 
, where d i 

F 
∼ X i 

F 
, d i 

S 
∼ Y i 

S 
and ɛ , ∈ , θ , ϑ are ex-

genous constants. Thus, we have uncertain demands DF and DS

nder discrete-time additive white Gaussian noise when ε = θ =
 and ∈ = ϑ = 1 , the assumption is used in many existing studies

11–13] , etc. Since uncertain demand is able to be time-dependent

r time-independent, we analyze decisions considering different

ypes of demand. In the first experiment, we assume DF and DS

emands are time-series with colored Gaussian noise. In the sec-

nd experiment, we assume both DF demand and DS demand fol-

ow normal distributions with white Gaussian noise. We examine

bservations 1 and 2 by conducting two experiments with differ-

nt type of Gaussian noise. 

xperiment 1. Correlative Demands with Colored Gaussian Noise 

We conduct the experiment of container capacity preparation

nd allocation problem with two schedules, and compare the so-

utions between different allocations polices. Since myopic policy

nd static policy are more simple and straightforward to apply in

ractice, the solution processes could be simplified if the advan-

ages of the two polices is employed in solving our problem. Con-

idering the substitutive feature between DF and DS demands and

ime-series characteristic of demand in multiple schedules, we as-

ume DF demand and DS demand are two-way transferred and fol-

ow colored Gaussian noise processes. Employing the assumptions

f the uncertain DF and DS demands, we conduct the experiment

nder a two-schedule allocation problem and compare the solu-
ions with dynamic, myopic and static allocation policies. The pa-

ameter values are assumed as follows. > 

 

2 
F = ( 1 − α) 

(
ε+ ∈ X 

1 
F 

)
+ β

(
θ + ϑY 1 S 

)
, d 2 S = α

(
ε+ ∈ X 

1 
F 

)
+ ( 1 − β) 

(
θ + ϑY 1 S 

)
, d 1 F ∼ X 

1 
F , d 

1 
S ∼ Y 1 S 

here X 1 
F 

= n ( 30 , 16 ) , X 1 
S 

= n ( 28 , 12 ) , α = 0 . 15 , β = 0 . 1 , ε = 10 ,

= 5 , ∈ = 0.0.96, ϑ= 0.92 

Since the time-series feature of DF demand and DS demand, we

alculate the Hurst exponents of two type of demand. We find the

urst exponents of DF demand is 0.72 and that of DS demand is

.68, which means DF and DS demands have strong long-term per-

istence. Meanwhile, penalty cost, carrier-owned container quan-

ity, and empty-container preparation cost follow normal distribu-

ion (truncated at zero and positive). That is, c 0 ∼ n (6, 12), v 1 ∼ n (6,

1), p 1 ∼ n (30, 11), u 1 ∼ n (7, 10), K 0 ∼ n (10, 16), and w = p 1 B (3 , 5) ,

here n denotes normal distribution and B denotes beta distribu-

ion. The revenue for satisfying one DF unit is αF = p 1 + v 1 − u 1 −
 . According to both real practice and our assumptions, αF > αS .

hus, we let αS = αF B (5 , 8) . To perform the comparative study, the

alues of each parameter in the three allocation policies are as-

umed as identical. We generate 50 scenarios to compare the op-

imal empty container quantity by using the different allocation

olicies ( Fig. 2 ). 

We show the simulation experiment results on the optimal

mpty container quantity from the three allocation policies by

ig. 2 . The experiment with 50 scenarios shows that the optimal

mpty container quantity using the static allocation policy is not

lways more than the quantity resulting from the myopic policy or

esser than the quantity resulting from the dynamic policy. How-

ver, the optimal empty container quantity using the myopic pol-

cy is always more than or equal to that using the dynamic policy.

he results provide directions for effectively searching the solution

o the optimal input material quantity of the system under its up-

er bound which suggested by the solutions under myopic policy.

o confirm this observation, more scenarios are generated by the

OE method. A two-tailed test statistical experiment is designed,

nd the corresponding confidence level, test power, and permissi-

le error of the result are 0.95, 0.1, and 1, respectively. We gener-

te 10,0 0 0 random scenarios such that more extreme values and

arameter combinations are included in the experiment. The value

f Q 

M∗
0 

− Q 

D ∗
0 

for each scenario are plotted in Fig. 3 , we have the

ean of Q 

M∗
0 − Q 

D ∗
0 values is 4.2888, and the standard variance is

.2115; hence, the basic effective scenario size fora robust evalua-
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Fig. 3. Comparison of optimal empty container quantities using the myopic and 

dynamic policies with big sample sizes. 

Fig. 4. (Q S∗
0 − Q D ∗0 ) /Q D ∗0 values in 10,0 0 0 scenarios. 
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tion is just 7,038 by using the DOE theory. In other words, we gen-

erate an adequate number of scenarios to perform the experiment

effectively. 

In order to verify observation 2, we test the (Q 

M∗
0 

− Q 

D ∗
0 

) /Q 

D ∗
0 

values for 10,0 0 0 scenarios, only 30.81% have corresponding val-

ues within the interval [ −0.1, 0.1]. However, the values of (Q 

S∗
0 

−
Q 

D ∗
0 

) /Q 

D ∗
0 

and (Q 

M∗
0 

− Q 

D ∗
0 

) /Q 

D ∗
0 

from the 5,0 0 0 simulation scenar-

ios are also computable. Comparing the values of (Q 

S∗
0 

− Q 

D ∗
0 

) /Q 

D ∗
0 

in each scenario, we observe 9,183 scenarios (91.83%) have (Q 

S∗
0 

−
Q 

D ∗
0 

) /Q 

D ∗
0 

values within the interval [ −0.1, 0.1]. Meanwhile, we

have the values range in [ −0.01,0.01] in 7,247 scenarios (72.47%).

Then, the means and variances of all control parameters are varied

to perform more experiments. Among over 90% scenarios in each

experiment, the absolute values of (Q 

S∗
0 

− Q 

D ∗
0 

) /Q 

D ∗
0 

are less than

0.1. Based on the DOE theory, the effective sam ple size for the test

is 9,025. The simulation adopts 10,0 0 0 scenarios; thus, the finding

is effective in the two-schedule problem. Fig. 4. 

Experiment 2. Correlative Demands with white Gaussian Noise 

In Experiment 1, we assume DS and DF demands are time-

dependent, where they follow normal distribution with colored

Gaussian noise. Experiment 1 drives to two observations, we fur-
her examine their robustness under uncertain demand with white

aussian noise by Experiment 2 ( Appendix 2 ). The main experi-

ental results in both experiments are presented in Table 2 . 

We find the main observations in Experiment 1 still hold in the

econd one. Observations 1 and 2 are verified in the experiment

nder simple decision circumstance with two allocation schedule.

e also examine the two observations under different decision cir-

umstance with more allocation schedules and parameter scopes.

he optimal quantities of the empty container under the dynamic

olicy are all smaller than the quantities under the myopic pol-

cy in all scenarios. Further, the optimal empty container quantity

nder the dynamic policy is almost identical to the static policy

n most situations. The observations are prohibited impossible to

nalytically prove since stochastic dynamic programming is one of

P-hard problems, but the observations are examined by two nu-

erical experiments above. 

As presented above, analytically solving a stochastic dynamic

rogramming is hard and large-scale simulations are often em-

loyed to have the numerical solutions. The allocation decision at

ach schedule is a dynamic programming model that considers all

uture demands as unrealized random variables, numerically solv-

ng the stochastic dynamic programming by simulations are also

urdensome. For example, given a T- schedule allocation frame-

ork, we must evaluate almost T dynamic stochastic programs to

btain the optimal empty container quantity. Thus, finding the op-

imal solution represents a significant computational burden. Con-

idering that the optimal empty container quantity from the my-

pic allocation policy is smaller than the dynamic allocation policy,

bservation 1 becomes very useful in reducing the computation it-

rations to optimize the solution of the dynamic model. As well, if

e search optimal solutions by having the static solution as the

nitial inputs, many computation iterations also can be reduced. In

ext subsection, a simplified search algorithm to numerically solve

he target problem Eqs. (3) –(10) is designed based on the two ob-

ervations. 

.2. Model solution 

1) Allocation decisions at current schedule 

The allocation decisions using the dynamic allocation policy are

ade based on the current empty container quantities and cur-

ent and future DS and DF. The optimal allocation decision can be

enerated using the Monte Carlo simulation. In the simulation, the

emand values are given by stochastic generation; thus, v F d t F and

 S d 
t 
S 

in Eq. (6) are known values and are ineffective to the solution.

herefore, the allocation solution in each schedule becomes a static

llocation problem, which can be solved using the transportation

roblem method. The transportation problem-solution framework

t schedule t is shown in Table 3 . 

The optimal transportation quantities Y t = { y D _ t 
F 

, y D _ t 
S 

} cor-

esponding to demands D 

t = { d t 
F 
, d t 

S 
} are the optimal empty

ontainer-allocation quantities at schedule t . 

2) Search algorithm for the optimal empty container quantity 

Considering that �D ( Q 0 ) is concave in Q 

D 
0 

( Lemma 1 ), optimal

mpty container quantity Q 

D ∗
0 

exists to maximize �D (Q 

D ∗
0 

) . Finding

he optimal solution is a significant computational burden; thus,

e design a search algorithm for the dynamic model. Based on

bservation 2, we consider the optimal empty container quantity

 

S∗
0 

from the static allocation policy because the initial value can

lways reduce the calculation iterations for optimal quantity Q 

D ∗
0 

.

he algorithm is designed as follows ( Fig. 5 ). 

The basic processes of the algorithm for the dynamic model are

s follows: 
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Table 2 

Experiment results in both experiments. 

Percentage of (Q S∗
0 − Q D ∗0 ) /Q D ∗0 ∈ [0 . 1 , 0 . 1] Percentage of Q M∗

0 − Q D ∗0 ≥ 0 

Experiment 1 with Colored Gaussian Noise 91.83% 100% 

Experiment 2 with White Gaussian Noise 94.66% 100% 

Table 3 

Transportation problem at schedule t . 

Current inventory Realized demand at schedule t Expected demand in future schedules Residual 

d t F d t S D t+1 
F 

D t+1 
S 

… D T F D T S R T 

x t F −αF + ∞ −αF + ∞ … −αF + ∞ 0 

X D _ t − x t F + ∞ −αS + ∞ −αS … + ∞ −αS 0 

Fig. 5. Algorithm for the dynamic allocation policy. 
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Step 1. Solve the problem by using the static allocation pol-

icy, and obtain the optimal empty container quantity Q 

S∗
0 

.

Solve the problem by using the myopic allocation policy,

and obtain the optimal empty container quantity Q 

M∗
0 . Let

Q 

D 
0 

= Q 

S∗
0 

. 

Step 2. If Q 

D 
0 

≥ Q 

M∗
0 

, go to Step 4; else, go to Step 3. 

Step 3. Calculate �D (Q 

D 
0 ) and �D (Q 

D 
0 + 1) . If �D (Q 

D 
0 ) >

�D (Q 

D 
0 

+ 1) , go to Step 4; else, go to 

Step 6. 

Step 4. Calculate �D (Q 

D 
0 ) and �D (Q 

D 
0 − 1) , then go to Step 5. 

Step 5. If �D (Q 

D 
0 
) < �D (Q 

D 
0 

− 1) , let Q 

D 
0 

= Q 

D 
0 

− 1 and go to

Step 4; else Q 

D ∗
0 

= Q 

D 
0 

. 

Step 6. Let Q 

D 
0 = Q 

D 
0 + 1 , and calculate �D (Q 

D 
0 ) and �D (Q 

D 
0 +

1) , then go to Step 7. 
D D D D D ∗ D 
Step 7. If � (Q 

0 
) < � (Q 

0 
+ 1) , go to Step 6; else Q 

0 
= Q 

0 
. 2  
.3. Numerical example 

To illustrate the effectiveness of the proposed algorithm, a nu-

erical experiment with two allocation schedules is implemented.

ll demands follow the normal distributions truncated at zero and

ounded to the nearest integer. The given parameters are d 1 
F 

∼
 (43 , 36) , d 2 F ∼ N (43 , 36) , d 1 S ∼ N (24 , 17) , d 2 S ∼ N (24 , 17) , c 0 = 7 ,

 0 = 15 , v F = 18 , p F = 30 , u F = 15 , v S = 2 , p S = 36 , u S = 12 , and

 = 1 . We first compute the optimal empty container quantity by

sing the myopic allocation and the static policies. The optimal val-

es are Q 

S∗
0 

= 86 and Q 

M∗
0 

= 93 , respectively. 

Then, we solve the dynamic model by using our algorithm

 Section 4.2 ). Taking Q 

D 
0 = Q 

S∗
0 

= 86 as the initial value of the

ynamic model, the corresponding initial profit is �D (86) =
665 . We set the input value Q 

D = 87 because 87 < Q 

M∗ = 93

0 0 
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Table 4 

Calculations using our algorithm. 

Optimal solution by static and myopic policy Solution by dynamic policy Calculation 1 Calculation 2 Calculation 3 

Q S∗
0 = 86 Q D 0 86 87 88 

Q M∗
0 = 93 �D (Q ∗0 ) 2665 3823 3770 
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and calculate the corresponding profit �D (87) = 3823 . The opti-

mal rented empty container quantity is more than 86 because

�D (86) < �D (87). We then set the input value Q 

D 
0 = 88 because

88 < Q 

M∗
0 

= 93 and calculate the corresponding profit �D (88) =
3770 . �D (86) < �D (87) and �D (87) > �D (88); thus, the optimal

rented empty container quantity for the carrier is Q 

D ∗
0 = 87 . The

maximum profit for the carrier is �D ∗(Q 

D 
0 
) = �D (Q 

D ∗
0 

) = 3823 . The

calculations using our algorithm are shown in Table 4 . 

In Table 4 , the algorithm takes only 3 iterations to obtain the

optimal rented empty container quantity, whereas it takes 87 iter-

ations using the standard search method. This finding shows more

than 96% of the total calculation burden is saved by using our new

searching method. Using the traditional searching method, the ini-

tial value of Q 

D 
0 

is considered as zero. However, based on our find-

ings, the optimal value of the container quantity using the dynamic

policy is almost identical to the value in using the static policy and

to the lower limit in using the myopic allocation policy. The nu-

merical example shows that our algorithm is very efficient. 

We also perform other experiments to verify the efficiency of

our algorithm. For example, we change the distributions of the ran-

dom variables and the values of the constant parameters, and we

find that the proposed algorithm in our paper needs fewer calcu-

lations. Then, we perform experiments in relatively complex inte-

grated systems (systems with three and five schedules), which re-

sulted in the need for fewer calculations. The proportions of the

reduced calculation burden saved vary from experiment to experi-

ment, but the larger of the number of schedules, the larger will be

the saved proportions of the calculations. 

5. Conclusions 

In this paper, we studied an empty container-allocation system

in which the demands arrive over discrete time schedules. The car-

rier invests in empty containers before the actual demands are

known. The carrier faces both DF and DS. Considering the long-

term contract between the carrier and the forwarder, the service

price of the forwarder is cheaper than that of the spot market. The

demands are random and follow certain distributions. The objec-

tive is to determine the optimal empty container quantity to max-

imize the total profit of the carrier. The problem can be divided

into two stages, namely, the empty container-preparation and the

allocation. The problem can be modeled as a stochastic dynamic

programming model because the demands in each schedule are

random. 

The allocation policy has a direct effect on the optimal empty

container-capacity plan. The dynamic allocation policy is proven to

be the optimal allocation policy, which satisfies first the DF at the

current schedule as much as possible, and satisfies the DS at the

current schedule based on the evaluation of future demands. We

prove that the objective function of the stochastic dynamic model

is concave in empty container quantity, and a single optimal value

of the variable exists. Two related similar allocation policies, which

are static and myopic, are available. We prove that the dynamic

policy is more profitable than the myopic policy. We also find that

the optimal empty container quantity allocated by the static policy

is almost identical to the dynamic policy. The calculation of the

model using the dynamic policy is burdensome; hence, this result

is useful in reducing the computational burden of finding the opti-
al solution. Thus, taking the optimal solution using the static pol-

cy as the initial value, a search algorithm is designed for the ob-

ective model. The numerical experiments show that the proposed

lgorithm is effective and requires fewer computations. 
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ppendix 1. Dynamic policy is more profitable than myopic 

olicy 

Proof. The carrier fixes the container capacity at the prepara-

ion stage, then, the number of containers that can be allocated to

atisfy the demands in T allocation schedules will be known. Let

he available empty containers at the beginning of schedule t be

 

t . The satisfied DS using the myopic policy is y M _ t 
S 

= min ( N 

t , d t 
S 
) ,

hereas the satisfied DS using the dynamic policy based on the

urrent and future demands is limited in the range [0 , min ( N 

t , d t 
S 
)] .

Let ρ be the quantity difference of the satisfied DS using the

yopic and dynamic policies at schedule t , that is, ρ = y M _ t 
S 

−
 

D _ t 
S 

≥ 0 . Simultaneously, the allocation quantities to the DF at

chedule t using the two policies are y M−t 
F 

and y D _ t 
F 

, respectively. At

chedule T , the dynamic policy does not consider future demands.

hus, the allocated quantities to the DF and DS in this schedule are

he same under the dynamic and myopic policies, 

 

D _ T 
F = y M _ T 

F , y D _ T S = y M _ T 
S (22)

nd 

M _ T = y M _ T 
F αF + y M _ T 

S αS = y D _ T F αF + y D _ T S αS = �D _ T (23)

Obviously, �M _ t+1 ≤ �D _ t+1 . Given the same initial empty con-

ainer quantity S t , because of Eq. (17) and the fact that �M _ t+1 ≤
D _ t+1 , the profit of the firm from the t th schedule to the T th 

chedule under myopic policy �M _ t can be calculated 

M _ t ( S t ) = y M _ t F αF + y M _ t S αS + �M _ t+1 ( S t − y M _ t F − y M _ t S ) 

= y D _ t F αF + (y D _ t S + ρ) αS + �M _ t+1 ( S t − y D _ t F − y D _ t S − ρ) 

≤ y D _ t F αF + (y D _ t S + ρ) αS + �D _ t+1 ( S t − y D _ t F − y D _ t S − ρ) 

= y D _ t F αF + y D _ t S αS + (ραS + �D _ t+1 ( S t − y D _ t F − y D _ t S − ρ)) 

≤ y D _ t F αF + y D _ t S αS + �D _ t+1 ( S t − y D _ t F − y D _ t S ) 

= �D _ t ( S t ) (24)

On the right-hand side of Eq. (24) , the first and second terms

re the revenues for satisfying the DS and DF at schedule t , respec-

ively, whereas the third term is the profit generated from ( t + 1) th 

o T th schedule. From Eq. (24) , we have �D _ t ≥ �M _ t , which means

hat the dynamic policy is more profitable than the myopic policy

iven the same initial empty container quantities, Q.E.D. 

ppendix 2. Design and observations of Experiment 2 

In Experiment 2, we assume the uncertain demands follow

hite Gaussian noise, which means DF demand and DS demand

http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/501100001809
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Fig. A1. Optimal empty container quantity by different allocation policies. 
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Fig. A2. Comparison of optimal empty container quantities using the myopic and 

dynamic policies with big sample sizes. 

Fig. A3. (Q S∗ − Q D ∗) /Q D ∗ values in 5,0 0 0 simulations. 
re realized under the same normal distribution in different alloca-

ion periods, respectively. In the Experiment 2 with two schedules,

e assume that all demands follow normal distributions (trun-

ated at zero and rounded to the nearest integer). The penalty cost,

arrier-owned container quantity, and empty-container preparation

ost follow normal distribution (truncated at zero and positive).

he parameter assumptions are as follows: d 1 F ∼ n (30 , 16) , d 2 F ∼
 (30 , 16) , d 1 

S 
∼ n (28 , 12) , d 2 

S 
∼ n (28 , 12) , c 0 ∼ n (6, 12), v 1 ∼ n (6, 11),

 1 ∼ n (30, 11), u 1 ∼ n (7, 10), K 0 ∼ n (10, 16), and w = p 1 B (3 , 5) ,

here n denotes normal distribution and B denotes beta distribu-

ion. 

The revenue for satisfying one DF unit is αF = p 1 + v 1 − u 1 − w .

ccording to both real practice and our assumptions, αF > αS . Thus,

e let αS = αF B (5 , 8) . To perform the comparative study, the val-

es of each parameter in the three allocation policies are assumed

s identical. We generate 50 scenarios to compare the optimal

mpty container quantity by using the different allocation policies

 Fig. 2 ). 

Fig. A1 shows the simulation experiment results on the prof-

ts from the three allocation policies. The results provide direc-

ions for searching a possible solution to the optimal input ma-

erial quantity of the system. The simulations show that the opti-

al empty container quantity using the static allocation policy is

ot always more than the quantity resulting from the myopic pol-

cy or lesser than the quantity resulting from the dynamic policy.

owever, the optimal empty container quantity using the myopic

olicy is always more than or equal to that using the dynamic pol-

cy. To confirm this observation, more scenarios are generated by

he DOE method. A two-tailed test statistical experiment is de-

igned, and the corresponding confidence level, test power, and

ermissible error of the result are 0.95, 0.1, and 1, respectively. We

enerated 5,0 0 0 random scenarios such that more extreme values

nd parameter combinations are included in the experiment. The

ean of the Q 

M∗
0 

− Q 

D ∗
0 

values is 0.0313, and the standard variance

s 0.1377; hence, the basic effective scenario size for the statistical

valuation is just 2,464 by using the DOE theory. In other words,

e generate an adequate number of scenarios to perform the ex-

eriment effectively. The Q 

M∗
0 

− Q 

D ∗
0 

values for each scenario are

lotted in Fig. A2 . 

Then, we obtain the values of (Q 

S∗
0 

− Q 

D ∗
0 

) /Q 

D ∗
0 

and (Q 

M∗
0 

−
 

D ∗
0 

) /Q 

D ∗
0 

from the 5,0 0 0 simulation scenarios ( Fig. A3 ). From the

tatistics of the scenarios, 4,733 scenarios (approximately 94.66%)

0 0 0 
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have (Q 

S∗
0 

− Q 

D ∗
0 

) /Q 

D ∗
0 

values within the interval [ −0.1, 0.1]. Mean-

while, 3,891 scenarios (76.82%) have zero values. Then, the means

and variances of all control parameters are varied to perform more

experiments. Among over 90% scenarios in each experiment, the

absolute values of (Q 

S∗
0 

− Q 

D ∗
0 ) /Q 

D ∗
0 are less than 0.1. Based on the

DOE theory, the effective sample size for the test is 4,273. The sim-

ulation adopts 5,0 0 0 scenarios; thus, the finding is effective in the

two-schedule simulation framework. However, when we test the

(Q 

M∗
0 

− Q 

D ∗
0 

) /Q 

D ∗
0 

values for 5,0 0 0 scenarios, only 42.38% have cor-

responding values within the interval [ −0.1, 0.1]. 

We also examine Observations 1 and 2 under different exper-

iments with multi-schedules. In all scenarios, the optimal quan-

tities of the empty container under the dynamic policy are all

smaller than the quantities under the myopic policy. Further, the

optimal empty container quantity under the dynamic policy is

always identical to the static policy. In most scenarios, the dif-

ference rates (Q 

S∗
0 

− Q 

D ∗
0 

) /Q 

D ∗
0 

are included within the interval

[0.15, 0.15]. 

The allocation decision at each schedule is a dynamic program-

ming model that considers all future demands as unrealized ran-

dom variables. For example, given a T- schedule allocation frame-

work, we must evaluate almost T dynamic stochastic programs

to obtain the optimal empty container quantity. Thus, finding

the optimal solution represents a significant computational bur-

den. Considering that the optimal empty container quantity from

the myopic allocation policy is smaller than the dynamic alloca-

tion policy, Observation 2 becomes very useful in reducing the

computation iterations to optimize the solution of the dynamic

model. 
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